期刊文献+

基于蚁群算法的粗糙集知识约简 被引量:4

Rough set knowledge reduction based on ant colony algorithm
在线阅读 下载PDF
导出
摘要 给出了一种新的粗糙集知识约简方法,即结合粗糙集理论的依赖度定义,先给出知识约简转化定理,然后运用一种改进型蚁群算法,采用局部和全局搜索相结合的方法,对知识表达系统进行约简.同时,在适值函数中引入罚函数,从而保证所求的约简在包含最少而非零个属性的基础上有较大的依赖度.通过Matlab计算实例可看出,本文算法对求解知识约简问题快速有效. A new algorithm of rough set knowledge reduction is proposed. First a switch theorem about attribute reduction is given, and then an improved ant colony algorithm is proposed to solve the reduction of knowledge express system combined with decision attribute dependency degree. Meanwhile, in order to assure fewer attributes while not non-attribute, stronger decision attribute dependency degree in knowledge reduction, punishing function is used in fitness function. The practical results show that this approach is an effective and quick way in solving knowledge reduction.
作者 朱江华 潘丰
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第A02期63-66,共4页 Journal of Southeast University:Natural Science Edition
关键词 粗糙集 知识约简 蚁群算法 rough set knowledge reduction ant colony algorithm
  • 相关文献

参考文献5

  • 1Pawlaw Z. Rough set approach to knowledge-based decision support [J]. European Journal of Operational Research, 1997,99:48-57.
  • 2王珏,苗夺谦.Analysis on Attribute Reduction Strategies of Rough Set[J].Journal of Computer Science & Technology,1998,13(2):189-192. 被引量:47
  • 3Johann Dreo, Patrick Siarry. A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions[A] .In: ANTS 2002 LNCS[C] .Berlin, Heidelberg: Springer-Verlag, 21302, 2463:216- 221.
  • 4陈崚,沈洁,秦玲.蚁群算法进行连续参数优化的新途径[J].系统工程理论与实践,2003,23(3):48-53. 被引量:37
  • 5Mohit Mathur, Sachin B Karale. Ant colony approach to continuous function optimization[J]. Ind Eng Chem Res, 2000, 39:3814-3822.

二级参考文献15

  • 1[1]Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of coorperating agents[J]. IEEE Trans on SMC, 1996, 26(1): 28-41.
  • 2[2]Dorigo M, Gambardella L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Trans on Evolutionary Computing, 1997, 1(1):53-56.
  • 3[3]Colorni A, Dorigo M, Maniezzo V. Ant colony system for job-shop scheduling[J]. Belgian J of Operations Research Statistics and Computer Science, 1994, 34(1): 39-53.
  • 4[4]Maniezzo V. Exact and approximate nonditerministic tree search procedures for the quadratic assignment problem[J]. INFORMS J Comput, 1999, 11: 358-369.
  • 5[5]Maniezzo V, Carbonaro A. An ANTS heuristic for the frequency assignment problem[J]. Future Generation Computer Systems, 2000, 16:927-935.
  • 6[6]Gambardella L M, Dorigo M. HAS-SOP: An Hybrid Ant System for the Sequential Ordering Problem[R]. Tech Rep No IDSIA 97-11, IDSIA, Lugano, Switzerland, 1997.
  • 7[7]Gambardella, L M, Dorigo M. Ant-Q: A reinforcement learning approach to the traveling salesman problem[A]. Proceedings of the 11th International Conference on Evolutionary Computation[C]. IEEE Press, 1996, 616-621.
  • 8[8]Dorigo M, Luca M. A study of Ant-Q[A]. Proceedings of 4th International Conference on Parallel Problem from Nature[C]. Berlin: Springer Verlag, 1996. 656-665.
  • 9[9]Stutzle T, Hoos H H. Improvements on the Ant System: Introducting the MAX-MIN Ant System. Artificial Neural Networks and Genetic Algorithms[M]. New York: Springer Verlag, 1988. 245-249.
  • 10[10]Gambaradella L M, Dorigo M. HAS-SOP: Hybrid ant system for the sequential ordering problem[R]. Technical Report IDSIA, 1997.

共引文献82

同被引文献21

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部