摘要
本文提出了一种精确求解任意截面形状介质填充波导高次模的快速边缘元算法.数值实验表明:与以往算法相比,此算法所用内存巨幅减小,计算效率极大提高.具体数值研究了波导高次模求解精度和剖分疏密的关系.本文还计算了矩形空波导、条状介质填充波导、以及方块介质填充波导的本征模,与解析解或公布结果比较,证实本算法计算精度极高且不含伪解.最后本文还用开发的程序具体研究了内壁涂层波导的本征模.
A fast algorithm of edge-element is presented for the computation of the high-order-modes in dielectric-loaded waveguides with arbitrarily transverse cross-sections. Numerical examples show that this algorithm requires greatly less memory and has significantly higher efficiency,compared with the previous algorithm. The relation between computation accuracy and division mesh is investigated numerically. The computations of propagation constants of the eigen-modes in rectangle waveguides and various dielectric- loaded waveguides demonstrate the high efficiency and accuracy of the pmpesed algorithm. At last, the eigen-modes in the interiorcoated waveguide are investigated with the developed code based on our pmpesed algorithm.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2005年第12期2149-2152,共4页
Acta Electronica Sinica
基金
国家自然科学基金(No.60371004)
国家重点基础研究发展规划(973计划)项目(No.2005CB321702)
关键词
快速算法
高次模
边缘元
介质填充波导
fast algorithm
edge element
high-order-modes
dielectric loaded waveguide