摘要
2001年Ghebleh M和Mahmoodian E S针对完全多部图这一重要图类(除了其中9个图)。特征化了 U3LC图。同时他们对这9个图提出了开放问题:查证图K2,2,r,r=4,5,6,7,8,K2,3,4,K1*4,4,K1*4,5和K1*5,4 不是U3LC图。鉴于此开放问题中待查证的图或是完全三部图Kr,s,t,或是完全多部图K1*r,s,笔者从反面入 手研究U3LC完全三部图Kr,s,t,和完全多部图K1*r,s的性质,以期实现最终利用这些性质彻底解决如上开放 问题,完善Ghebleh M和Mahmoodian E S的结果。
In 2001, Ghebleh M and Mahmoodian E S characterized U3LC graphs for complete multipartite graphs, which is an important class of graphs, with nine supplementary graphs that present here an open problem ( to verify the graphs K(2,2.r), r=4,5,6,7,8, K(2,3,4), K(1*4.4). K(1*4.5). and K(1*5,4) not being U3LC graphs). Since any graph that needs to be verified is either a complete tripartite graph K or complete multipartite graph K(1*r,s) some properties of U3LC graphs K and K(1*r,s) which are at variance to them, have been discussed in this paper. We hope that the above open problem can be resolved
出处
《河北科技师范学院学报》
CAS
2005年第4期42-45,共4页
Journal of Hebei Normal University of Science & Technology
基金
河北省教育厅自然科学研究项目(项目编号:2005008)。