期刊文献+

双驱动热声热机谐振管中声波的传播特性研究 被引量:4

Study on the propagation characteristics of acoustic field in the resonance of the Bi-drivers thermoacoustic engine
在线阅读 下载PDF
导出
摘要 分析了双驱动热声热机谐振管中声波的传播特性,通过分析指出,对于双驱动的热声热机,可以通过改变其反射系数和驱动声源的驱动相位差,进而实现谐振管声场的声压幅值和声场相位的改变.理论研究表明,在|rp|=0.3,相位差为σπ=0.5π时的声压幅值大于σπ=π的声压幅值;而在σπ=0.5π时,声场幅值随反射系数|rp|的增大而增大.实验研究表明,在相位差σπ为常数时,通过改变不同的反射系数值,就可以实现谐振管中声场的调节;在反射系数|rp|为常数时,通过改变谐振管两边驱动声源的驱动电压值,也可以实现声场幅值和相位差的调节.这样就有利于调节结构已经确定的微型热声热机的最佳声场分布,使其达到最优热声转换效率,实现微型双驱动热声制冷机热声制冷效率的最优化. The propagation characteristics of acoustic filed in the resonance tube of the Bi-driver thermoacoustic engine (BDTE) were systematically analyzed. The value and phase of acoustic filed of TE were changed by adjusting the reflection coefficient (|rp|) of the sound source and its phase shift (σπ). The theoretical research showed that on the condition |rp|=0.3, the value of the sound pressure at was bigger than it used to be at. When σπ=0.5π, the acoustic field's value grew with the increase of |rp|. On condition, acoustic field in the resonance tube could be adjusted by changing different reflection coefficient. When |rp| = constant, the adjustment of the value of acoustic field and phase shift were realized by changing the pressure of driver sound source in the two sides of resonance tube. The maximal acoustic efficiency can be achieved toward structure qualification's BDTE by adjusting the reflection coefficient (|rp|) and phase shift (σπ).
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第1期24-26,共3页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 中南大学博士后科学基金资助项目 高等学校博士学科点专项基金资助项目(20030487046)
关键词 谐振管 热声热机 声场 传播特性 双驱动 resonance tube thermoacoustic engine acoustic field propagation characteristics Bidriver
  • 相关文献

参考文献10

  • 1Swift G W. Thermoacoustic engines[J]. J Acoust Soc Am, 1988, 84(4): 1 145-1 180.
  • 2Ceperley P H. A pistonless stirling engine-the traveling wave heat engine[J]. J Acoust Soc Am, 1979,66. 1 508-1 513.
  • 3Ceperley P H. Gain and efficiency of a short traveling wave heat engine[J]. J Acoust Soc Am, 1985, 77:1 239-1 244.
  • 4Swift G W. Thermoacoustic engines and refrigerators[J]. Phys Today, 1995, 48: 22-28.
  • 5Backhaus S, Swift G W. A thermoacoustic-stirling heat engine., detailed study[J]. J Acoust Soc Am,2000, 107:3 148-3 166.
  • 6Yazaki Y, Iwata W, Maekawa T. Traveling wave thermoacoustic engine in a looped tube[J]. Physical Review Letters, 1998, 81(15): 3 128-3 131.
  • 7Symko O G, Abdel-Rahman E, Zhang DeJuan, et al.High frequency thermoacoustic refrigerator[P]. U S Patent, No6, 574,968, 2003.
  • 8Fellows O L. Thermoacoustic resonator[P]. U S Patent No6, 385,972, 2002.
  • 9Symko O G, Abdel-Rahman E, Zhang DeJuan, et al.High frequency thermoaeoustic refrigerator[P]. U S Patent, No6, 804967, 2004.
  • 10刘益才,郭方中,鄂青.多孔填料回热器工质的压缩性研究[J].华中科技大学学报(自然科学版),2005,33(2):16-18. 被引量:4

二级参考文献8

  • 1刘益才.[D].武汉:华中科技大学能源与动力工程学院,2004.
  • 2Utsuno H, Tanaka T, Fujikawa T, et al. Transfer function method for measuring characteristic impedance and propagation constant of porous materials [ J ]. J Acoust Soc Am, 1989, 86:637-643.
  • 3Wilen L A. Measurements of thermoacoustic function for Single pores[J]. J Acoust Soc Am, 1998, 103:1 406-1 412.
  • 4Gabriela P. Fundamental measurement in standing-wave and traveling-wave thermoacoustic[D]. Ohio: The College of Arts and Sciences, Ohio University, 2002.
  • 5Viggo T. Compressibility of air in fibrous materials[J].J Acoust Soc Am, 1996, 99. 3010-3017.
  • 6Viggo T. Calculation of the dynamie air. flow resistivity of fiber materials[J]. J Acoust Soc Am, 1996, 100:3 706-3 713.
  • 7Viggo T. Calculation of the dynamic air flow resistivity of fiber materials[J].J Acoust Soc Am, 1997, 102:1 680-1 688.
  • 8Lambert R F, Ter J S. Acoustic structure and propagation in highly porous, layered, fibrous materials [ J ]. J Acoust Soc Am, 1984, 73:1 231-1 237.

共引文献3

同被引文献26

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部