期刊文献+

两种新的对数似然比简化算法及其在LDPC码上的应用 被引量:1

Two Novel Simplified Logarithm Likelihood Ratio Calculating Algorithms and Their Application in LDPC Codes
在线阅读 下载PDF
导出
摘要 通常用取最小绝对值方法对若干比特模二和的对数似然比(LLR)进行简化,该方法存在误差积累问题,因而不是最有效的.为此,提出了两种新的LLR简化算法:正比例函数拟和修正法和逐点平均值曲线修正法,并用这两种算法替代了低密度奇偶校验(LDPC)码归一化最有效可信传播(UMP-BP)译码中的LLR计算,使其在降低译码复杂度的情况下误码率更低.仿真结果表明,对于码长1 024 bits的LDPC码,采用所提出的LLR简化算法后性能较UMP-BP译码方法有0.4 dB提高,并与最优的可信传播算法接近,计算复杂度也有明显下降. The method of taking minimum absolute value is generally used to simplify logarithm likelihood ratio (LLR) of modulo 2 sum of several bits. However, this method is not very effective because of that accumulates errors. Two novel simplified LLR calculating algorithms, the direct proportion approximation as well as the each dot approximation, were proposed and applied on uniformly most powerful -belief propagation (UMP-BP) algorithm, a decoding algorithm of low density parity check (LDPC) codes, to reduce the complexity and improve the BER performance. The simulation results show that, for an LDPC code of length 1 024 bits, the proposed method improves 0.4 dB in performance over the UMP-BP, and performs almost the same as the optimum belief propagation (BP) decoding algorithm.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2006年第1期46-49,共4页 Journal of Shanghai Jiaotong University
关键词 信道编码 低密度奇偶校验码 对数似然比 可信传播算法 迭代译码 channel coding low density parity check (LDPC) codes logarithm likelihood ratio (LLR) belief propagation (BP) decoding algorithm iterative decoding
  • 相关文献

参考文献5

  • 1Gallager R G, Low density parity check codes [J].IEEE Trans on Inform Theory, 1962,8 : 21 - 28.
  • 2Gallager R G. Low density parity-check codes [M].Cambridge, MA: MIT Press, 1963.
  • 3Mackay D J C. Good error correcting codes based on very sparse matrices [J]. IEEE Trans on Inform Theory, 1999,45:399-431.
  • 4Berrou C, Glavieux A, Thitimajshima P, Near Shannon limit error-correcting coding and decoding Turbo codes[A]. IEEE Proceedings of the Int Conf on Commumications[C]. Geneva, Swithzerland:IEEE, 1993.1064-1070.
  • 5Fossorier M P C. Reduce complexity iterative decoding of low-density parity cheek codes based on belief propagation [J]. IEEE Trans on Communications, 1999,47:673-679.

同被引文献7

  • 1GALLAGER R G.Low-density parity-check codes[J].IRE Trans Inform Theory,1968,8(1):21-28.
  • 2MACKAY D J C.Good error-correcting codes based on very sparse matrices[J].IEEE Trans Inform Theory,1999,45(3):399-431.
  • 3YAZDANI M R,HEMATI S,BANIHASHEMI A H.Improving belief propagation on graphas with cycles[J].IEEE Com Letters,2004,8(1):57-59.
  • 4TANG Heng,XU Jun,LIN Shu.Codes on finite geometries[J].IEEE Trans Inform Theory,2005,51(2):572-596.
  • 5FOSSORIER M P C,MIHALJEVIC M,IMAI H.Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J].IEEE Trans Com,1999,47(5):673-680.
  • 6CHEN Jing-hu,DHOLAKIA A,ELEFTHERIOU E.Reduced complexity decoding of LDPC codes[J].IEEE Trans Com,2005,53(8):1288-1299.
  • 7CHEN Jing-hu,FOSSORIER M P C.Density evolution for two improved BP-based decoding algorithms of LDPC codes[J].IEEE Com Letters,2002,6(5):208-210.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部