期刊文献+

细菌趋药性算法理论及应用研究进展 被引量:8

Development on Bacterial Chemotaxis Optimization Theory and its Application
在线阅读 下载PDF
导出
摘要 细菌趋药性算法是优化领域一种新的仿生进化算法。该算法利用细菌在引诱剂环境下的应激反应动作来进行函数优化。针对细菌趋药性算法,首先介绍了其基本原理;然后讨论了近年来对该方法的若干改进;最后详述了细菌趋药性算法未来的研究方向和主要研究内容,该方法是具有实际研究价值的函数优化算法。 Bacterial chemotaxis optimization is a novel category of bionic algorithm for optimization problems.The algorithm takes advantage of the bacterium's reaction to chemoattractants to find the optimum.To the algorithm,firstly,the basic principle of bacterial chemotaxis optimization is introduced.Then,a series of schemes on improving the algorithm are discussed.Finally,some remarks on the further research and directions are presented.This algorithm is a kind of potentially powerful optimization method worth of much more research.
出处 《计算机工程与应用》 CSCD 北大核心 2006年第1期44-46,共3页 Computer Engineering and Applications
关键词 细菌趋药性 智能优化 随机优化方法 bacterial chemotaxis,intelligent optimization,stochastic optimization methods
  • 相关文献

参考文献1

二级参考文献9

  • 1Holland J H. Adaptation in Nature and Artificial Systems [M]. MIT Press, 1992.
  • 2Dorigo Marco, Maniezzo Vittorio, Colorni Alberto. Ant System: Optimization by a Colony of Cooperating Agents [J]. IEEE Transaction on SMC, Part B, 1996, 26(1): 29-41.
  • 3Muller S D, J Airaghi Marchetto S, Koumoutsakos P. Optimization Based on Bacterial Chemotaxis [J]. IEEE Transaction of Evolutionary Computation, 2002, 6(1): 16-29.
  • 4Bremermann H J. Chemotaxis and Optimization [J]. J Franklin Inst , 1974, 297: 397-404.
  • 5Passino K M. Biomimicry of bacterial foraging for distributed optimization and control [J]. IEEE Control System Magazine, 2002-06. 52-67.
  • 6Reynolds C W. Flocks, herd, schools: a distributed behavioral mode [A]. Proceeding of SIGGRAPH'87, Computer Graphics [C]. Anaheim, California. 1987, 21(4): 25-34.
  • 7Kennedy J, et al. Particle Swarm optimization [A]. Proc. IEEE Int. Conf. on Neural Networks [C]. Perth, WA, Australia, 1995. 1942-1948.
  • 8Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans. Evolutionary Computation, 2002, 6(1): 58-73.
  • 9Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization [A]. Proc. 2000 Congress on Evolutionary Computation [C]. Piscataway, NJ: IEEE Service Center, 2000. 84-88.

共引文献91

同被引文献75

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部