摘要
综述了从20世纪90年代初开始兴起的对奇摄动问题中空间对照结构解的研究状况.具体介绍了常微分方程中具有阶梯状和脉冲状空间对照结构的一系列工作,其中包括临界情况和非临界情况;同时介绍了变分问题中空间对照结构研究的最新进展,并对偏微分方程中空间对照结构的发展进行了概述.
This paper surveys recent developments in studies of contrast spatial structure solutions of singularly perturbed problems, which have rise since the beginning of 1990's. It mainly introduces a series of work about step-type and spike-type solutions in ODE, including critical and uncritical cases. In the meanwhile, it introduces the latest research progress of contrast spatial structure of variation problems. The outline of contrast spatial structure solutions in PDE is also included.
出处
《华东师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2006年第1期1-12,共12页
Journal of East China Normal University(Natural Science)
基金
上海浦江人才计划上海市教育委员会E-研究院建设项目(E03004)教育部留学回国人员科研启动基金资助项目
关键词
奇摄动
空间对照结构
阶梯状结构
脉冲状结构
Singular Perturbation
Contrast Spatial Structure Solutions
step-type solutions
spike-type solutions