摘要
本文在简要回顾了铸造合金液凝固过程数学模型的历史后,引入了虚拟渗流和虚拟渗透系数的概念,将铸造合金液转化为含有均布多孔的渗流体,从而将应用渗流力学的理论来研究合金液体的水力学特征;应用渗流模型中的Boussinesq方程和J·Dupuit假设来进行铸造合金液凝固过程的研究,导出了在不同凝固方式下凝固过程服从的数学模型和铸造合金凝固过程中所服从的通用模型;且比原模型简单,为进行凝固过程的多量平衡和移动边界条件的解决提供了可能;该模型用于补缩系统的辨识和优化设计证明了该模型的可信性。
This paper presents the concept of titular porous media and titular penetration coefficient, after briefly dating back to history of mathematical modelfor solidification process. So the hydraulic features of liquid metal can be wo-rked out by using porous media hydrodynamics, that is, metal liquid can bechanged into the porous media penetrant. Then J. Dupuit's hypothesis and Bo-ussinesq equation can be used for researching the solidifying process, Mathema-tical model of solidification process in different freezing methods can be derivedfrom the porous media hydrodynamics. It has the advantage over the initial mod-el. It opens up possibilities for solving mult-equations equilibrium and movingboundry conditon. It provides the modelling basis of system identification of feeding system as well as optimal risering.
关键词
铸件
凝固过程
数学模型
渗流
titular porous media
solidification process
mathematical model
porous media hydrodynamics