期刊文献+

基于对称ICA的特征抽取方法及其在人脸识别中的应用 被引量:6

Feature Extraction Based on Symmetrical ICA and Its Application to Face Recognition
原文传递
导出
摘要 独立成分分析在信号处理和图像处理领域已受到广泛关注.本文提出了一种基于人脸直观自然特性的新算法——对称独立成分分析.该算法在代数上基于函数分解的思想,几何上基于人脸的镜像对称.首先引入镜像变换,然后根据奇、偶分解原理,分别生成奇偶对称样本,最后分别提取各奇偶样本的独立成分.理论分析与实验证明,该算法巧妙利用了镜像样本,既扩大了样本容量,又提高了识别率.同时该算法对光照变化有一定的不敏感性. Independent Component Analysis ( ICA ) has been extensively used in the field of signal processing and image processing. In this paper, a new algorithm called symmetrical ICA (SICA) based on facial symmetry is proposed. This algorithm is based on the theory of [unction decomposition in algebra and mirror symmetry in geometry . In this algorithm , mirror transform is firstly introduced. Then, even/odd symmetrical samples are produced based on the theory of the even/ odd decomposition principle, and the even/odd independent components are extracted from the corresponding samples respectively Both theoretical analysis and experimental results demonstrate that this algorithm not only enlarges the number of training samples , but also remarkably raises the recognition rate. Experiment results also show this algorithm is not sensitive to the illumination variation of human faces.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第1期116-121,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金(No.60472060 60572034) 南京理工大学科研发展基金(No.AB96125)
关键词 独立成分分析 对称独立成分分析 人脸识别 奇偶分解 镜像变换 Independent Component Analysis, Symmetrical Independent Component Analysis, Face Recognition, Even/Odd Decomposition, Mirror Transform
  • 相关文献

参考文献18

  • 1Swets D L, Weng J. Using Discriminant Eigenfeatures for Image Retrieval. IEEE Trans on Pattern Analysis and Machine Intelligence, 1996, 18(8) 831-836
  • 2Belhumeur V, Hespanha J, Kriegman D, Eigenfaces vs Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
  • 3Yang J, Yang J Y. Why Can LDA Be Performed in PCA Transformed Space? Pattern Recognition, 2003,36(2) : 563-566
  • 4洪子泉,杨静宇.用于图象识别的图象代数特征抽取[J].自动化学报,1992,18(2):233-238. 被引量:71
  • 5Liu C J, Wechsler H. Robust Coding Schemes for Indexing and Retrieval from Large Face Databases. IEEE Trans on Image Processing, 2000, 9(1): 132-137
  • 6Etemad K, Chellappa R. Face Recognition Using Discriminant Eigenvectors. In: Proc of IEEE International Conference on Acoustics, Speech, and Signal Processing. Atlanta, USA, 1996, Ⅳ : 2148-2151
  • 7Comon P, Independent Component Analysis-A New Concept? Signal Processing, 1994, 36(3):287-314
  • 8杨竹青,李勇,胡德文.独立成分分析方法综述[J].自动化学报,2002,28(5):762-772. 被引量:148
  • 9Bartlett M S, Movellan J R, Sejnowski T J, Face Recognition by Independent Component Analysis, IEEE Trans on Neural Networks, 2002, 13(6):1450-1464
  • 10Liu C J, Wechsler H. Comparative Assessment of Independents Component Analysis (ICA) for Face Recognition. In: Proc of the 2nd International Conference on Audio-and Video-Based Biometric Person Authentication. Washington,USA, 1999, 22-24

二级参考文献6

  • 1孙即祥.数字图像处理[M].石家庄:河北教育出版社,1993..
  • 2焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996..
  • 3李淑秋,数据采集与处理,1989年,4卷,增刊,12页
  • 4Tian Q,J Opt Soc Am A,1988年,5卷,10期,1670页
  • 5孙继广,矩阵扰动分析,1987年
  • 6章照止 林须端.信息论与最优编码[M].上海:上海科学技术出版社,1993..

共引文献215

同被引文献58

  • 1王恩美,范鑫,李春胜,王宏.一种新型心电信号采集及分析系统[J].仪器仪表学报,2001,22(z1):368-369. 被引量:6
  • 2杨青,孙佰聪,朱美臣,杨青川,刘念.基于小波包熵和聚类分析的滚动轴承故障诊断方法[J].南京理工大学学报,2013,37(4):517-523. 被引量:13
  • 3戚湧,胡俊,於东军.基于自组织映射与概率神经网络的增量式学习算法[J].南京理工大学学报,2013,37(1):1-6. 被引量:7
  • 4吴小培,叶中付,郭晓静,张道信,胡人君.基于滑动窗口的独立分量分析算法[J].计算机研究与发展,2007,44(1):185-191. 被引量:9
  • 5Zhao W, Chellappa R, Rosenfel A, et al. Face Recognition: A Literature Survey. ACM Computing Surveys, 2003,35(4) : 399 -458
  • 6Zabrodsky H, Peleg S, Avnir D. Symmetry as a Continuous Feature. IEEE Trans on Pattern Analysis and Machine Intelligence, 1995, 17(12) :1154 -1166
  • 7Reisfeld D, Yeshurun Y. Robust Detection of Facial Features by Generalized Symmetry// Proc of the 11th IAPR International Conference on Computer Vision and Applications. The Hague, Netherlands, 1992:117 - 120
  • 8Kirby M, Sirovich L. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces. IEEE Trans On Pattern Analysis and Machine Intelligence, 1990, 12(1) : 103 - 108
  • 9Etemad K, Chellappa R. Face Recognition Using Discriminant Eigenvector//Proc of the IEEE International Conference of Acoustics, Speech, and Signal Processing. Albuquerque, USA, 1996, Ⅳ: 2148 -2151
  • 10Turk M, Pentland A. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 1991, 3( 1 ) : 71 -86

引证文献6

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部