期刊文献+

放电反应器中掺杂介质受电场力分析 被引量:2

Analysis of Electric Field Force on Impurities in Discharging Reactor
在线阅读 下载PDF
导出
摘要 借助有限元方法分析计算了气中水滴和水中气泡两类掺杂介质在电场作用下所受力,包括电场力在两相介质交界面上的分布规律、掺杂介质大小及位置改变时作用力的变化、作用力对掺杂介质形态和运动的影响等。分析结果表明,掺杂介质在电场中所受力作用在交界面上,方向由介电常数大的介质指向小的介质,二者介电常数相差很大时作用力与交界面法线方向相同,作用力在交界面上的分布与反应器电极结构尺寸、介质相态、掺杂介质形状尺寸及在反应器中的位置和电场分布局部畸变等有关。气中水滴受电场线方向的拉伸作用,水中气泡受等位线方向的压缩作用,越靠近电极受力越大,水滴受电场力合力指向线电极,气泡则相反,合力将影响其运动状态。 By means of the finite element analysis, it indicates that the electric field force on impurities is on the boundary of the two phases medium and its direction is from the less dielectric constant to the bigger one. The direction of the force is as same as the boundary normal when there is big difference in dielectric constants in two phases medium. The force distribution on the boundary is relative to the configuration and size of electrodes, the medium's phase states, the figure and size of impurities and their positions in the reactor, and also the aberrance of electric field. The drips in air get pulling force by the direction of the electric lines of force, while the bubbles in water get pushing force by the direction of the equipotential lines, and the closer to the line electrode the greater the forces are. The composition of electric field forces on drips points to the line electrode, which is opposite to bubble, and affects the moving state of drips/bubbles.
出处 《高电压技术》 EI CAS CSCD 北大核心 2006年第2期57-59,83,共4页 High Voltage Engineering
基金 哈尔滨工业大学跨学科交叉性研究基金(批准号:HIT.MD2002.1)
关键词 电场力 放电反应 水滴 气泡 有限元分析 electric field force discharging react drip bubble finite element analysis
  • 相关文献

参考文献14

二级参考文献30

  • 1李胜利,李劲,王泽文,姚宏霖,高秋华,尹小根.用高压脉冲放电等离子体处理印染废水的研究[J].中国环境科学,1996,16(1):73-76. 被引量:98
  • 2上海交通大学高电压技术教研组.高电压工程[M].北京:中国工业出版社,1961..
  • 3左公宁.陆地电火花震源的组合和垂直迭加效果.石油地球物理勘探,1983,(4):331-338.
  • 4[1]Allen P H G, Karayiannis T G. Electrohydynamic Enhancement of Heat Transfer and Fluid Flow. Heat Recovery Systems & CHP, 1995, 15(5): 389-423
  • 5[2]Yagoobi J S, Bryan J E. Enhancement of Heat Transfer and Mass Transport in Single-Phase and Two-Phase with Electrohydrodynamics. Advances in Heat Transfer, 1999,33:95-186
  • 6[3]Zaghdoudi M C, Lallemand M. Study of the Behaviour of a Bubble in an Electric Field: Steady Shape and Local Fluid Motion. International Journal of Thermal Science,2000, 39:39-52
  • 7[5]Herman C, Lacona E, Foldes I B, et al. Experimental Visualization of Bubble Formation from an Orifice in Microgravity in the Presence of Electric Fields. Experiments in Fluids, 2002, 32:396-412
  • 8黄礼镇,电磁场原理,1983年
  • 9叶齐政,高电压技术,1999年,19卷,6期,12页
  • 10Lang P S,Environ Sci Technol,1998年,32卷,3142页

共引文献71

同被引文献22

  • 1王晓明,赵莹.等离子体反应器多相介质电场畸变分析[J].高电压技术,2005,31(5):41-43. 被引量:8
  • 2Yan K, Winands G J J, Liu Z, et al. Comparison of two-type corona plasma energization techniques: ultrashort and DC/AC power sources [C] // Industry Applications Conference. Kowloon, Hong Kong, China: Institute of Electrical and Electronics Engineers Inc, 2005 : 1840-1844.
  • 3Namihira T, Yamaguchi T, Yamamoto K, et al. Characteristics of pulsed discharge plasma in water[C]//IEEE Pulsed Power Conference. Monterey, CA, USA, 2005: 1013-1016.
  • 4Kazuhiko Horioka, Tohru Kawamura, Mitsuo Nakajima, et al. High-energy-density physics researches based on heavy ion accelerator and pulse power deviees[J]. Nuclear Instruments and Methods in Physics Research, 2007, 577(1/2): 298 -302.
  • 5Toru Sasaki, Yuuri Yano, Mitsuo Nakajima, et al. Warm dense-matter studies using pulse-power discharges in water[J]. Nuclear Instruments and Methods in Physics Research, 2007 577(1/2) : 313-316.
  • 6Alex Pokryvailo, Yefim Yankelevich, Michael Wolf, et al. A high-power pulsed corona source for pollution control applications[J]. IEEE Trans on Plasma Sci, 2004, 32(5) : 2045-2054.
  • 7Alex Pokryvailo, Michael Wolf, Yefim Yankelevich, et al. High power pulsed corona for treatment of pollutants in heterogeneous media[J]. IEEE Trans on Plasma Sci, 2006, 34(5): 1731-1743.
  • 8Ellyana Njatawidjaja, Anto Tri Sugiarto, Takayuki Ohshima, et al. Decoloration of electrostatically atomized organic dye by the pulsed streamer corona discharge[J]. Journal of Electrostatics, 2005, 63(5): 353-359.
  • 9Yavorovsky N A, Peltsman S S, Kornev J I, et al. Technology of water treatment using pulsed electric discharges[J]. IEEE Science and Technology, 2000, 3: 422- 427.
  • 10Atsushi Yamatake, Jeremy Fletcher, Koichi Yasuoka, et al. Water treatment by fast oxygen radical flow with DC-driven microhollow cathode discharge[J]. IEEE Trans on Plasma Sci, 2006, 34(4): 1375-1381.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部