期刊文献+

基于密度法的热传导结构拓扑优化准则算法 被引量:12

Algorithm of Topology Optimization Criteria for Heat Conduction Structure Based on Density Approach
在线阅读 下载PDF
导出
摘要 热传导结构优化设计研究主要集中在形状及尺寸优化方面,这类方法由于结构初始估计构形带有经验性,通常并不是结构的最优拓扑,使设计具有局限性;为了有效求解热传导结构的最优拓扑,将结构力学中成熟的拓扑优化思想及其方法拓展到热传导结构的拓扑优化设计中,同时以最小热量传递势容耗散为优化目标,基于密度法建立热传导结构拓扑优化设计数学模型,并推导相应的优化准则;计算过程中应用基于卷积的滤波技术处理迭代密度场,消除数值计算不稳定性;不同条件下的数值算例验证了本文思想和算法的正确性、有效性,所得拓扑优化结果为后继的形状和尺寸优化提供了可靠的依据. The existing methods for the optimal design of heat conduction structures mainly focus on the optimization of the shape and the size. But the obtained topology may not be the optimal one due to the absence of the initial optimal topology. To seek the optimal topology for heat conduction structures, the well-rounded topology methodology and algorithms in structural mechanics are adopted in the optimal design of heat conduction structures, with the least dissipation of heat transport potential capacity as the optimal objective. Then the topology optimization model of heat conduction is established and the corresponding optimization criteria are proposed based on the density approach. Moreover, during the calculation process, a filtering technique based on the convolution is employed in density field to eliminate numerical instability. Numerical examples in different conditions are finally presented to demonstrate the correctness and validity of the proposed method, with the results laying a reliable foundation for the subsequent shape and size optimizations in thermal engineering.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第2期27-32,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(5043601050375055) 广东省自然科学基金重点资助项目(04105942)
关键词 热传导 拓扑优化 密度法 最小热量传递势容耗散 滤波技术 heat conduction topology optimization density approach least dissipation of heat transport potential capacity filtering technique
  • 相关文献

参考文献10

  • 1Bejan A.Constructal-theory network of conducting paths for cooling a heat generating volume [J].International Journal of Heat and Mass Transfer,1997,40 (4):799-816.
  • 2Bejan A.From heat transfer principles to shape and structure in nature:constructal theory [J].ASME Journal of Heat Transfer,2000,122 (3) :430- 449.
  • 3Snider A D.General extended surface analysis method [J].Journal of Heat Transfer,1981,103(4):699-704.
  • 4简弃非,甘庆军,许石嵩.换热器翅片表面空气流动热力过程的数值模拟[J].华南理工大学学报(自然科学版),2004,32(9):67-71. 被引量:21
  • 5荣见华,姜节胜,胡德文,颜东煌,付俊庆.基于应力及其灵敏度的结构拓扑渐进优化方法[J].力学学报,2003,35(5):584-591. 被引量:82
  • 6Li Qing,Steven G P,Xie Y M.et al.Evolutionary topology optimization for temperature reduction of heat conducting fields [J].International Journal of Heat and Mass Transfer,2004,47:5071-5083.
  • 7Bendsoe M P,Sigmud O.Topology optimization:theory,method,and application [M].New York:Spring,2003.
  • 8张宪民.柔顺机构拓扑优化设计[J].机械工程学报,2003,39(11):47-51. 被引量:58
  • 9王书亭,左孔天.基于均匀化理论的拓扑优化算法研究[J].华中科技大学学报(自然科学版),2004,32(10):25-27. 被引量:8
  • 10Sigmund O,Petersson J.Numerical instabilities in topology optimization:A survey on procedures dealing with checkboards,mesh-dependencies and local minima [J].Struct Optim,1998,16:68-75.

二级参考文献26

  • 1[1]Bendsoe M P, Kikuchi. Generating optimal topologies in structural design using a homogenization method. Computer methods in Applied mechanics and Engineering, 1988, 71:197~224
  • 2[2]Nishiwaki S, Frecker M I, Min S, et al. Topology optimization of compliant mechanisms using homogenization method. International Journal for Numerical Method Engineering, 1998, 42:535~559
  • 3[3]Yin L, Ananthasuresh G K. A novel formulation for the design of distributed compliant mechanisms. In:Proceedings of the 2002 ASME Design Engineering Technical Conferences, 2002, DETC2002/MECH-34213
  • 4[4]Nishiwaki S, Min S, Yoo J, et al. Optimal structural design considering flexibility. International Journal for Numerical Method Engineering, 2001, 190:4 457~4 504
  • 5[5]Frecker M I, Ananthasuresh G K, Nishiwaki S, et al. Topological synthesis of compliant mechanisms using multi-criteria optimization. Transactions of the ASME, Journal of Mechanical Design, 1997, 119(2):238~245
  • 6[6]Frecker M I, Kota S, Kikuchi N. Use of penalty function in topological synthesis and optimization of strain energy density of compliant mechanisms. In:Proceedings of the 1997 ASME Design Engineering Technical Conferences, 1997, DETC97/ DAC-3760
  • 7[7]Frecker M I, Kikuchi N, Kota S. Topology optimization of compliant mechanisms with multiple outputs. Structural Optimization, 1999, 17:269~278
  • 8[8]Frecker M I, Canfield S. Design of efficient compliant mechanisms from ground structure based optimal topologies. In:Proceedings of the 2000 ASME Design Engineering Technical Conferences, 2000, DETC2000/ MECH-14142
  • 9[9]Hetrick J A, Kota S. Topological and Geometric Synthesis of compliant mechanisms. In:Proceedings of the 2000 ASME Design Engineering Technical Conferences, 2000, DETC2000/ MECH-14140
  • 10[10]Saxena A. On mutiple-material optimal compliant topologies: discrete variable parameterization using genetic algorithm. In:Proceedings of the 2002 ASME Design Engineering Technical Conferences, 2002, DETC2002 /MECH-34209

共引文献162

同被引文献117

引证文献12

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部