摘要
提出一种基于均匀三角多项式B样条的动态保凸细分算法,它可以看作DooSabin细分算法在动态模式下的一个推广.其细分规则基于张量积曲面细分模式的几何意义,不仅可以生成旋转曲面等特殊曲面,而且可以根据参数来控制细分曲面的形状.最后运用传统的离散傅里叶技术和特征根方法证明了该细分算法的收敛性.
We present a new dynamic convexity preserving subdivision scheme based on the bi-quadratic uniform trigonometric polynomial B-spline. This scheme can be considered as an extension of the Doo-Sabin scheme in the dynamic case. The subdivision rules based on the geometric interpretation of the tenor product scheme, and it can reproduce the surfaces of revolution. Furthermore, we can control the shape of the limit surface by modifying the shape parameter. The convergence of the scheme is proved in the paper by the traditional discrete Fourier technigue and the eigenvalue method.
出处
《计算机辅助设计与图形学学报》
EI
CSCD
北大核心
2006年第3期341-346,共6页
Journal of Computer-Aided Design & Computer Graphics
基金
国家自然科学基金(60473130)
国家重点基础研究发展规划项目(2004CB318000)
关键词
Doo-Sabin细分
均匀三角B样条
保凸
动态细分
旋转曲面
Doo-Sabin subdivision
uniform trigonometric B-spline
convexity preserving
dynamic subdivision
surfaces of revolution