期刊文献+

Doo-Sabin细分算法在动态模式下的推广 被引量:2

An Extension of Doo-Sabin Subdivision Algorithm Based on the Dynamic Scheme
在线阅读 下载PDF
导出
摘要 提出一种基于均匀三角多项式B样条的动态保凸细分算法,它可以看作DooSabin细分算法在动态模式下的一个推广.其细分规则基于张量积曲面细分模式的几何意义,不仅可以生成旋转曲面等特殊曲面,而且可以根据参数来控制细分曲面的形状.最后运用传统的离散傅里叶技术和特征根方法证明了该细分算法的收敛性. We present a new dynamic convexity preserving subdivision scheme based on the bi-quadratic uniform trigonometric polynomial B-spline. This scheme can be considered as an extension of the Doo-Sabin scheme in the dynamic case. The subdivision rules based on the geometric interpretation of the tenor product scheme, and it can reproduce the surfaces of revolution. Furthermore, we can control the shape of the limit surface by modifying the shape parameter. The convergence of the scheme is proved in the paper by the traditional discrete Fourier technigue and the eigenvalue method.
作者 徐岗 汪国昭
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第3期341-346,共6页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(60473130) 国家重点基础研究发展规划项目(2004CB318000)
关键词 Doo-Sabin细分 均匀三角B样条 保凸 动态细分 旋转曲面 Doo-Sabin subdivision uniform trigonometric B-spline convexity preserving dynamic subdivision surfaces of revolution
  • 相关文献

参考文献8

  • 1Doo D,Sabin M.Behaviour of recursively division surfaces near extraordinary points[J].Computer-Aided Design,1978,10(6):356-360
  • 2Morin G,Warren J,Weimer H.A subdivision scheme for surfaces of revolution[J].Computer Aided Geometric Design,2001,18(5):483-502
  • 3Jena M K,Shunmugaraj P,Das P C.A subdivision algorithm for trigonometric spline curves[J].Computer Aided Geometric Design,2002,19(1):71-78
  • 4Jena M K,Shunmugaraj P,Das P C.A non-stationary subdivision scheme for generalizing trigonometric spline surface to arbitrary meshes[J].Computer Aided Geometric Design,2003,20(2):61-77
  • 5吕勇刚,汪国昭,杨勋年.Uniform trigonometric polynomial B-spline curves[J].Science in China(Series F),2002,45(5):335-343. 被引量:17
  • 6王国瑾,汪国昭,郑建民.计算机辅助几何设计[M].北京:高等教育出版社,Heidelbreg:Springer,2002.
  • 7Davis P J.Circulant matrics[M].New York:John Wiley and Sons,1979
  • 8Lu Yonggang,Wang Guozho,Yang Xunnian.Uniform hyperbolic polynomial B-spline curves[J].Computer Aided Geometric Design,2002,19(6):379-393

二级参考文献4

  • 1Helmut Pottmann,Michael G. Wagner.Helix splines as an example of affine Tchebycheffian splines[J].Advances in Computational Mathematics.1994(1)
  • 2Zhang,J. W.Two different forms of C-B-Splines[].Computer Aided Geometric Design.1997
  • 3Mazure,M. L.Chebyshev-Bernstein bases[].Computer Aided Geometric Design.1999
  • 4Pottmann,H.The geometry of Tchebycheffian spines[].Computer Aided Geometric Design.1993

共引文献18

同被引文献21

  • 1曾庭俊,王卫民,张纪文.C-B样条旋转曲面造型研究[J].工程图学学报,2004,25(2):104-108. 被引量:9
  • 2曾庭俊,罗国明,张纪文.Catmull-Clark细分曲面的形状调整[J].计算机辅助设计与图形学学报,2004,16(5):707-711. 被引量:7
  • 3周敏,叶正麟,彭国华,郑红婵,任水利.细分曲面的形状调节与控制[J].机械科学与技术,2006,25(10):1163-1165. 被引量:1
  • 4DOO D,SABIN M.Behaviour of recursive division surfaces near extraordinary points[J].Computer Aided Design,1978,10(6):356-360.
  • 5NASRI A.Polyhedral subdivision methods for free-form surfaces[J].ACM Transactions on Graphics,1987,6(1):29-73.
  • 6ZHENG J M,CAI Y Y.Making Doo-Sabin surface interpolation always work over irregular meshes[J].The Visual Computer,2005,21(4):242-251.
  • 7任秉银,李小东.一种细分曲面形状控制方法[C]// 第二届全国几何设计与计算学术会议论文集.合肥:中国科技大学出版社,2005:135-138.
  • 8ZHENG J M,CAI Y Y.Interpolation over Arbitrary Topology Meshes Using a Two-Phase Subdivision Scheme[J].IEEE Transactions on Visualization and Computer Graphics,2006,12(3):301-310.
  • 9BRUNET P.Including shape handles in recursive subdivision Surfaces[J].Computer Aided Geometric Design,1988,5(1):41-50.
  • 10PETERS J.Constructing C1 Surfaces of Arbitrary Topology Using Biquadratic Bicubic Spline[C]// Designing Fair Curves and Surfaces.Philadelphia:SIAM,1994:277-293.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部