期刊文献+

区间Ball曲线的边界及降阶 被引量:4

Boundary and Degree Reduction of Interval Ball Curves
在线阅读 下载PDF
导出
摘要 讨论了n次区间Ball曲线的边界的构成;同时通过讨论区间多项式的降阶,利用线性规划法及最佳一致逼近法,给出了区间Ball曲线的的降阶算法.若利用线性规划法得到的区间曲线不能达到预期的误差,则可以结合细分的技术实现. The boundary of interval Ball curves of degree n is discussed and two algorithms for the degree reduction of interval Ball curves are given by means of linear programming and best approximation respectively. If the interval curves obtained by linear programming method fall to be controlled within the expected error, then subdivision technique can be used.
作者 檀结庆 江平
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2006年第3期378-384,共7页 Journal of Computer-Aided Design & Computer Graphics
基金 国家自然科学基金(10171026 60473114) 安徽省自然科学基金(03046102) 合肥工业大学校基金(041001F)
关键词 区间Ball曲线 边界 降阶 interval Ball curve boundary degree reduction
  • 相关文献

参考文献16

  • 1Moore R E.Interval analysis[M].Englewood Cliffs,NJ:Prentice-Hall,1996
  • 2Sederberg T W,Farouki R T.Approximation by interval Bézier curves[J].IEEE Computer Graphics and Its Application,1992,15(2):87-95
  • 3Hu C-Y,Maekawa T,Sherbrooke E C,et al.Robust interval algorithm for intersections[J].Computer-Aided Design,1996,28(6/7):495-506
  • 4Hu C-Y,Patrikalakis N M,Ye X Z.Robust interval solid modeling:PartⅠ:representations[J].Computer-Aided Design 1996,28(10):807-817
  • 5Hu C-Y,Patrikalakis N M,Ye X Z.Robust interval solid modeling:PartⅡ:boundary evaluation[J].Computer-Aided Design,1996,28(10):819-830
  • 6Hu C-Y,Maekawa T,Patrikalakis N M,et al.Robust interval algorithm for surface intersections[J].Computer-Aided Design,1997,29(9):617-627
  • 7Chen Falai,Lou Wenping.Degree reduction of interval Bézier curves[J].Computer-Aided Design,2000,32(10):571-582
  • 8寿华好,王国瑾.区间Bézier曲线的边界[J].高校应用数学学报(A辑),1998,13(B06):37-44. 被引量:6
  • 9Ball A A.Consurf PartⅠ:Introduction of conic lofting tile[J].Computer-Aided Design,1974,6(4):243-249
  • 10Ball A A.Consurf Part Ⅱ:Description of the algorithms[J].Computer-Aided Design,1975,7(4):237-242

二级参考文献18

  • 1江平,邬弘毅.Wang-Ball基函数的对偶基及其应用[J].计算机辅助设计与图形学学报,2004,16(4):454-458. 被引量:8
  • 2Wu HongyiDept. ofMath. and Mech., HefeiUniv. of Technology,Hefei230009..UNIFYING REPRESENTATION OF BZIER CURVE AND GENERALIZED BALL CURVES[J].Applied Mathematics(A Journal of Chinese Universities),2000,15(1):109-121. 被引量:15
  • 3奚梅成.Ball基函数的对偶基及其应用[J].计算数学,1997,19(2):147-153. 被引量:18
  • 4Ball A A. CONSURF, Part 1: Introduction of the conic lofting tile [J]. Computer-Aided Design, 1974, 6(4): 243~246.
  • 5Ball A A. CONSURF, Part 2: Description of the algorithms [J]. Computer-Aided Design, 1975, 7(4): 237~242.
  • 6王国瑾.高次Ball曲线及其应用[J].高校应用数学学报:A辑,1987,2(1):126-140.
  • 7Said H B. Generalized Ball curve and its recursive algorithm[J].ACM Transactions on Graphics, 1989, 8(4): 360~371.
  • 8Goodman T N T, Said H B. Properties of generalized Ball curves and surfaces [J]. Computer-Aided Design, 1991, 23(8): 554~560.
  • 9Goodman T N T, Said H B. Shape preserving properties of the generalized Ball basis [J] . Computer Aided Geometric Design,1991, 8(2): 115~121.
  • 10Hu S M, Wang G Z, Jin T G. Properties of two types of generalized Ball curves [J]. Computer-Aided Design, 1996, 28(2): 125~133.

共引文献13

同被引文献27

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部