期刊文献+

判别分析模型在信用评价中的应用 被引量:11

Application of Discriminant Analysis Models in Credit Risk Evaluation
在线阅读 下载PDF
导出
摘要 本文利用线性判别分析建立信用评价模型,用来对中国2000年106家上市公司2000年96家上市公司进行两类模式(“好”、“差”)分类及三类模式(“好”、“中”、“差”)分类。对于线性判别分析法,又使用两种不同的方法进行判别分析:一种是利用SPSS统计软件对数据样本进行判别分析,称为LDA-SPSS方法;一种是利用原始样本数据推导建立线性判别分析模型,然后根据模型计算得到的结果对数据样本进行判别分析,称为LDA方法。仿真结果表明,无论是两类模式分类还是三类模式分类,LDA-SPSS的判别效果均优于LDA。但与多层感知器(MLP)相比,对两类模式分类,LDA-SPSS(100%)优于MLP(98.11%),MLP又优于LDALDA(95.28%);对三类模式分类,LDA-SPSS(91.67%)优于LDA(82.29%),LDA又优于MLP(79.17%)。 The paper uses linear discriminant analysis to establish two credit risk evaluation models. The two models are used to classify the 106 Chinese listed companies into two patterns: "good" and bad" and classify 96 Chinese listed companies into three patterns: "good", "median" and "bad". For the linear discriminant analysis, we also use two different methods. One is called LDA. The other is called LDA-SPSS. The simulating results show that the diseriminant effects of LDA-SPSS is better than that of LDA no matter the two patterns classification or the three patterns classification are used. However, as compared with miltilayer perceptron (MLP), for the two patterns classification, LDA-SPSS (100%) is better than MLP (98.11%) while MLP is better than LDA (95.28%). For the three patterns classification, LDA-SPSS (91.67%) is better than LDA (82.29%) while LDA is better than MLP (79.17%).
出处 《南方经济》 北大核心 2006年第3期113-119,共7页 South China Journal of Economics
基金 国家自然科学基金(60574069) 广东省软科学研究项目(2005B70101044)资助。
关键词 线性判别法 信用评价模型 模式分类 多层感知器 Linear diseriminant analysis Credit risk evaluation model Patterns classification Miltilayer perceptron.
  • 相关文献

参考文献11

二级参考文献21

  • 1JENSEN H. Using neural networks for credit scoring[ J ].Managerial Finance, 1992,18(6) : 15 - 26.
  • 2COATS P, PANT L. Recnganizing finasmial distress patterns using a neural network tool[ J ]. Financial Management,1993:142 - 155.
  • 3ALTMAN E, MARCO G, etal. Corporate distress diagnosis:comparisom using linear discriminant analysis and neural netwoeks ( the Italian experience ) [ J ]. J Banking and Finance, 1994, 18:505-529.
  • 4HASHEMI R R,Le BLANC L A, RUCKS C T, et al. A hybrid intelligent system for predicting bank holding structrure[ J ]. European Journal of Operational Research,1998, 109: 390-402.
  • 5WEST D. Neural network credit scoring models [ J ].Computers & Operations Research, 2000, 27:1131 - 1152.
  • 6MALHOTRA R, MALHOTRA D K. Differentiating between good credits and bad credits using neuro-fuzzy systems[J].Computing,Artificial Intelligence and Information Technology, 2002, 136:190-211.
  • 7RUMELHART D E, McCLELLAND J L, the PDF Research Group. Parallel Distributed Processing[M] .Cambridge M A:MIT Press, 1986.Vols 1-2.
  • 8HUSH D R, HORNE.Progress in supervised neural networks[J]. IEEE Signal Process Mag, 1993, 10:8 - 39.
  • 9点津财经法律文库,1998年
  • 10上海证券报

共引文献959

同被引文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部