期刊文献+

磁浮控制系统的传感器非线性校正方法研究 被引量:4

Study of Sensor Calibration Method for the Maglev Control System
在线阅读 下载PDF
导出
摘要 磁浮控制系统采用涡流传感器检测其运行状态。由于控制系统对精度和实时性有较高要求,涡流传感器输入输出特性的非线性和模型随环境的变化需要快速准确的补偿。为此,采用径向基函数网络建立涡流传感器逆模型,使加入逆模型后涡流传感器输入输出映射单位线性化。采用本文提出的简化自适应隐层结构和中心学习算法能够快速准确得到网络结构和参数。实际测量说明,该方法在精度和实时性方面满足要求,校正误差小于0.7%,能够补偿涡流传感器模型的变化。该方法能够用于精度和实时性要求高的其他传感器校正中。 The eddy current sensor is used in the maglev control system to detect the state of the system. Because of the requirements of real time and precision, the nonlinear input-output characteristic of the eddy current sensor and its model variation with environment should be calibrated accurately and quickly. And then, the Radial Basis Function (RBF) neural network is used to construct the inverse model of the eddy current sensor. The input output mapping is unity after the adding the RBF network. The proposed simplified adaptive algorithm for hidden layer structure and center value can compute the structure and parameter of RBF network quickly and accurately. In the practical measurement, the calibration error is less than 0.7% and the variation of the model can also be calibrated. The method can satisfy the requirements of real time and precision in the maglev control system. It can also be used to calibrate other types of sensors used in high precision and real time system.
出处 《电工技术学报》 EI CSCD 北大核心 2006年第3期71-75,88,共6页 Transactions of China Electrotechnical Society
基金 北京交通大学科技发展基金资助项目(DQJ05007)。
关键词 涡流传感器 RBF网络 非线性校正 简化自适应学习算法 Eddy current sensor, radial basis function, nonlinear calibration, simplified adaptive algorithm
  • 相关文献

参考文献12

  • 1李莉,孟光.电磁型磁悬浮列车动力学研究综述[J].铁道学报,2003,25(4):110-114. 被引量:23
  • 2张瑞华,严陆光,徐善纲,武瑛.几种典型的高速磁悬浮列车方案比较[J].电工电能新技术,2004,23(2):46-50. 被引量:22
  • 3Anaya J,Ulate L G,Fritsch C.A method for real time deconvolution.IEEE Transactions on Instrument and measurement,1992,41 (3):413~419
  • 4Brignell J E.Software techniques for sensor compensation.Sensors and Actuators A:Physical,1991,78 (2-3):143~148
  • 5Jagdish P C,denBos V Adriaan,Alex K C.An ANN-based smart capacitive pressure sensor in dynamic environment 2000,86 (1-2):26~28
  • 6戴先中,殷铭,王勤.传感器动态补偿的神经网络逆系统方法[J].仪器仪表学报,2004,25(5):593-596. 被引量:26
  • 7Hong sung K.Compensation of nonlinear thermal bias drift of resonant rate sensor using fuzzy logic.Sensors and Actuators A:Physical.1999,78(2-3):143~ 148
  • 8Haykin S.Neural Network,a Comprehensive Foundation:2nd edition.Macmillan,1999
  • 9Leonard J A,Kramer M A,Ungar L H.Using radial basis function to approximate a function and its error bounds.IEEE Trans.on Neural Network,1992,3(4):624~627
  • 10Chen S,et al.Orthogonal least squares learning algorithm for radial basis function networks.IEEE Transactions on Neural Networks.1991,2(2):302~309

二级参考文献48

  • 1谢云德,常文森.电磁型磁浮列车单铁力的计算及运动稳定性和可控性研究[J].铁道学报,1995,17(1):41-48. 被引量:12
  • 2谢云德,常文森.电磁型(EMS)磁悬浮列车系统铅垂方向的建模与仿真[J].铁道学报,1996,18(4):47-54. 被引量:18
  • 3凌复华.周期系数线性常微分方程稳定性区域的边界的数值计算[J].上海交通大学学报,1983,17:57-68.
  • 4连级三.电力牵引控制系统[M].北京:中国铁道出版社,1996..
  • 5Nayfeh A H, Mook D T. Nonlinear Oscillations [M].New York: John Wiley, 1979.
  • 6Kruzer E. Numerical researches of non-linear Dynamics[M]. Translated by Ling Fuhua. Shanghai: Publishing House of Shanghai Jiaotong University, 1989 (in Chinese).
  • 7Earnshow S. On the nature of the molecular forces which regulate the constitution of the lumiferous ether [R].Transaction Cambridge Philosophy Society. 1842.7. 97--112.
  • 8Braunbek W. Frei schwebende Koerper im electircschen und magnetischen Feld[R]. Z. Phys.. 112,1939. 753--763.
  • 9Jung V. Magnetisches Schweben[M]. Berlin: Spring-Berlag, 1988.
  • 10Brezezina W, Langerhols J. Lift and side forces on rectangular pole pieces in two dimensions[J]. Journal of Applied physics, 1974,45(4) :1868--1872.

共引文献68

同被引文献51

引证文献4

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部