期刊文献+

载气种类对单壁碳纳米管管径的影响研究 被引量:3

Study on the effect of the type of carrier gas on the diameter of single-walled carbon nanotube
在线阅读 下载PDF
导出
摘要 单壁碳纳米管的管径对其性能、特别是储氢性能有极其重要的影响,但至今未见制备过程中系统控制单壁碳纳米管管径的报道。本文分别以氦气、氮气和氩气为载气,采用催化裂解法制备了不同直径范围的单壁碳纳米管。HRTEM和Raman光谱分析表明,以氦气、氩气为载气制得的碳管直径分布范围相对较窄,平均直径分别约为1.6和5.0nm。以氮气为载气时碳管直径分布相对较宽,约为2.0~4.5nm。氮气与碳反应生成氮化碳可能是导致单壁碳纳米管直径分布相对较宽的主要原因。分别以氦气、氮气和氩气为载气制得的单壁碳纳米管,在273K,15MPa时质量储氢分数依次为4.21%、6.30%和8.05%。 The diameter of single-walled carbon nanotube has very significant effect on its properties, especially hydrogen storage property. However, no result has been reported about controlling the diameter systematically during the preparation of SWNT so far. Single-walled carbon nanotubes with different diameter were synthesized successfully by catalytic pyrolysis method when helium, nitrogen and argon was used as carrier gas, respectively. It was revealed by HRTEM and Raman spectrum analysis that SWNT synthesized with helium and argon as carrier gas had relatively narrow diameter distribution, with 1.6nm and 5.0nm respectively and SWNT synthesized with nitrogen as carrier gas had relatively wide diameter distribution, from 2.0-4. 5nm. The formation of carbon nitride was probably the main reason for the growth of SWNT with wide diameter distribution. SWNT synthesized with helium, nitrogen and argon as carrier gas had mass fraction of hydrogen storage of 4.21%, 6.30% and 8.05% respectively at 273K and 15MPa.
出处 《功能材料》 EI CAS CSCD 北大核心 2006年第4期639-641,645,共4页 Journal of Functional Materials
基金 国防重大基础研究资助项目(J1500E002)
关键词 单壁碳纳米管 载气 催化裂解法 制备 储氢 single-walled carbon nanotube carrier gas catalytic pyrolysis synthesis hydrogen storage
  • 相关文献

参考文献11

  • 1Dillon A C,Jones K M,Bekkedahl T A,et al.[J].Nature,1997,386:377-379.
  • 2Schlapbach L,Zuttel A.[J].Nature,2001,414:353-358.
  • 3Liu C,Fan Y Y,Liu M,et al.[J].Science,1999,286:1127-1129.
  • 4Long R Q,Yang R T.[J].J Am Chem Soc,2001,40(20):4288-4291.
  • 5Challeta S,Azaysa P,Pellenq R J M.[J].J Phys Chem Solids,2004,65:541-544.
  • 6Zuttel A,Rentsch S,Fischer P.[J].J of Alloy and Comp,2003,356:515-520.
  • 7程锦荣,闫红,陈宇,张立波,赵力,黄德财,唐瑞华.碳纳米管储氢性能的计算机模拟[J].计算物理,2003,20(3):255-258. 被引量:16
  • 8Zhu H W,Xu C L,Wu D H.[J].Science,2002,296:884-886.
  • 9Huang Shaoming,Maynor Benjamin,Cai Xinyu.[J].Adv Mater,2003,15(19):1651-1655.
  • 10Yang Quanhong,Bai Shao,Sauvajol J l.[J].Adv Mater,2003,15(10):792-795.

二级参考文献12

  • 1Heermann D W 秦克诚(译).理论物理学中的计算机模拟方法[M].北京:北京大学出版社,1996.42-48.
  • 2程锦荣 等 裴鹿成 王仲奇主编.Metropolis抽样中随机游动步长因子的确定[A].裴鹿成、王仲奇主编.蒙特卡罗方法及其应用[C].海洋出版社,1998.40-42.
  • 3Dillon A C, et al. Storage of hydrogen in single-walled carbon Nanotube . Nature, 1997, 386:377 - 379.
  • 4lijima S. Helical microtubules of graphitic carbon . Nature, 1991, 354:56 - 59.
  • 5Farida Darkrim, Dominique Levesque. Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes . Journal of Chemical Physics, 1998, 109:4981- 4984.
  • 6Williams K A, Eklund P C. Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes [ J ] .Chemical Physics Letters, 2000, 320: 352- 358.
  • 7Ayappa K G. Influence of temperature on mixture adsorption in carbon nanotubes: a grand canonical Monte Carlo study .Chemical Physics Letters, 1998, 282: 59- 63.
  • 8Liu C, et al. Hydrogen storage in single-walled carbon nanotubes at room temperature .Science, 1999, 286:1127 - 1129.
  • 9Chen P, Wu X, Lin J, Tan K L. High H2 uptake by alkalidoped carbon nanotubes under ambient pressure and moderate temperatures [J] .Science, 1999, 285: 91- 93.
  • 10Lee S M, Lee Y H. Hydrogen storage in single-walled carbon nanotubes [ J ]. Appl Phys Lett, 2000, 76:2877 -2879.

共引文献15

同被引文献69

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部