摘要
在回顾数据分类和信息熵的基础上,提出了基于信息熵的多传感器数据分类方法.该方法根据传感器数据自熵和互熵的关系实现冲突、冗余和补充的数据分类,建立多传感器数据分类结构并进行分类融合.实例分析说明了这种数据分类方法的合理性和分类融合的有效性.
A method of multisensor data classification based on entropy is suggested after a review of data classification and information entropy. It classifies data of conflict, redundancy and complementarity according to the relationship of self-entropy and mutual entropy about sensor data, and builds the structure of multisensor data classification for classified fusion. An example illustrates the rationality of the method and the validity of classified fusion.
出处
《控制与决策》
EI
CSCD
北大核心
2006年第4期410-414,420,共6页
Control and Decision
基金
国家863计划基金项目(2003AA412310)