期刊文献+

基于微粒群算法的梯级水电厂短期优化调度研究 被引量:50

Optimization of short-term operation of cascade hydropower stations based on particle swarm algorithm
在线阅读 下载PDF
导出
摘要 介绍了一种易于实现、参数少且收敛快的集群智能算法—微粒群算法,并将其应用于梯级水电厂的短期优化调度。提出以确定微粒群在多维空间中的最优位置来实现多阶段优化调度决策的方法,并针对算法易陷入局部最优的缺陷,引入遗传算法中的“杂交”因子以及采用自适应的惯性权重,以改进其全局优化能力。通过实际算例验证了该算法的有效性,从而为梯级水电厂的短期优化调度问题提供了一种新的求解途径。 A swarm-intelligence-based algorithm of particle swarm optimization, which is simply implementing, fast convergent and only with few parameters, is introduced and applied to the short-term operation optimization of cascade hydropower plants. A method of finding the best location in multi-dimenslonal space of particles is presented to achieve the optimal decision of multi-stage operation, the global convergence performance of PSO is improved by importing a cross operator of GA and using a self-adapting inertia. The effectiveness of this algorithm is verified by the sample application, thus a new method is provided for the short-term optimization problem of cascade hydropower stations.
出处 《水力发电学报》 EI CSCD 北大核心 2006年第2期94-98,共5页 Journal of Hydroelectric Engineering
基金 国家自然科学基金资助项目(50579019)
关键词 水利管理 短期优化调度 微粒群算法 梯级水电厂 water management shor-term operation optimization particle swarm optimization (PSO) cascade hydropower stations
  • 相关文献

参考文献6

二级参考文献10

  • 1[3]Yoshida H, Kawata K, Fukuyama Y et al. A particle swarm optimization for reactive power and voltage control considering voltage security[J]. IEEE Trans on Power Systems, 2000, 15(4):1232-1239.
  • 2[4]Soares S, Lyra C, Tavares H. Optimal generation scheduling of hydro-thermal power system[J]. IEEE Trans on Power Apparatus and Systems, 1980, 99(3): 1107-1115.
  • 3[5]Wu Yonggang, Ho Chunying, Wang Dingyi. A diploid genetic approach to short-term scheduling of hydro-thermal system[J]. IEEE Trans on Power Systems, 2000, 15(4): 1268-1274.
  • 4[1]KENNEDY J,EBERHART R. Particle swarm optimization [A]. IEEE Int'l Conf. on Neural Networks[C]. Perth,Australia:IEEE, 1995. 1942-1948.
  • 5[2]EBERHART R,KENNEDY J. A new optimizer using particle swarm theory [A]. Proc. of the sixth international Symposium on Micro Machine and Human Science[C]. Nagoya, Japan: [ s.n. ], 1995.39- 43.
  • 6[3]SHI Yu-hui,EBERHART R. Parameter selection in particle swarm optimization[A]. Proc. of the 7th Annual Conf. on Evolutionary Programming[C]. Washington DC: [s.n.], 1998. 591-600.
  • 7[5]SHI Y,EBERHART R. A modified particle swarm optimizer[A]. IEEE World Congress on Computational Intelligence[C]. [s.1.]: IEEE, 1998.1951-1957.
  • 8[6]CLERC M,KENNEDY J. The particle swarm-explosion,stability,and convergence in a multidimensional complex space[J]. IEEE Trans. on Evolutionary Computation,2002,6(1) :58-73.
  • 9[8]YOSHIDA H,KAWATA K,FUKUYAMA Y. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. IEEE Trans.on Power Systems,2000,15(4): 1232-1239.
  • 10王黎,马光文.Streeter-Phelps模型参数估计的遗传算法[J].水科学进展,1997,8(1):32-37. 被引量:8

共引文献144

同被引文献459

引证文献50

二级引证文献378

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部