期刊文献+

一种基于多示例学习的图像检索方法 被引量:9

A Multi-Instance Learning Based Approach to Image Retrieval
原文传递
导出
摘要 由于多示例学习能够有效处理图像的歧义性,因此被应用于基于内容的图像检索(CBIR).本文提出一种基于多示例学习的 CBIR方法.该方法将图像作为多示例包,使用基于自组织特征映射网络聚类的方法分割图像,并将由颜色和纹理特征描述的图像区域作为包中示例.根据用户选择的实例图像生成正包和反包,使用多示例学习算法进行学习,实现图像检索和相关反馈.实验结果表明这种方法与已有方法检索效果相当,但检索效率更高. Multi-instance learning has already been employed in Content-Based Image Retrieval (CBIR) for the reason that it is good at dealing with the inherent ambiguity of images. In this paper, a multi-instance learning based CBIR approach is presented. The whole image is regarded as a multi- instance bag. The image is partitioned into several regions using a Self-Organizing feature Map (SOM) clustering based image segmentation method , then the regions described by color and texture features are regarded as the instances in the bag. Next, query images posed by the user are transformed into corresponding positive and negative bags and a multi-instance algorithm is employed for image retrieval and relevance feedback . Experiments show that this approach achieves comparable results to some existing approaches and is even more efficient.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2006年第2期179-185,共7页 Pattern Recognition and Artificial Intelligence
基金 国家杰出青年科学基金(No.60325207) 国家自然科学基金(No.60473046) 全国优秀博士学位论文作者专项基金(No.200343) 973计划(No.2002CB312002)资助项目
关键词 机器学习 多示例学习 基于内容的图像检索(CBIR) Machine Learning, Multi-Instance Learning, Content Based Image Retrieval
  • 相关文献

参考文献17

  • 1Dietterich T G, Lathrop R H, Lozano-Perez T. Solving the Multiple Instance Problem with Axis-Parallel Rectangles, Artificial Intelligence, 1997, 89(1-2): 31-71
  • 2Maron O. Learning from Ambiguity. Ph. D Dissertation. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge. USA, 1998
  • 3Smeulders A W M, Worring M, Santini S, Gupta A, Jain R.Content-Based Image Retrieval at the End of the Early Years,IEEE Trans on Pattern Analysis and Machine Intelligence,2000, 22(12): 1349-1380
  • 4Long P M, Tan I.. PAC Learning Axis-Aligned Rectangles with Respect to Product Distribution from Multiple-Instance Exampies. Machine Learning, 1998, 30(1): 7-21
  • 5Auer P, Long P M, Srinivasan A. Approximating Hyper-Rectangles, Learning and Pseudo-Random Sets. Journal of Computer and System Science, 1998, 57(3):376-388
  • 6Wang J, Zucker J-D. Solving the Multiple-Instance Problem:a Lazy Learning Approach. In: Langley P, ed. Proc of the 17th International Conference on Machine Learning. Stanford,USA, 2000, 1119-1125
  • 7Ruffo G. Learning Single and Multiple instance Decision Trees for Computer Security Applications, Ph. D Dissertation. Department of Computer Science, University of Turin, Torino,Italy, 2000
  • 8Zucker J-D. Chevaleyre Y. Solving Multiple-.Instance and Multiple-Part Learning Problems with Decision Trees and Decision Rules. In: Stroulia E, Matwin S, eds. Lecture Notes in Artificial Intelligence. Berlin, Germany: Springer-Verlag. 2001, 204-214
  • 9Zhou Z H, Zhang M L. Neural Networks for Multi-Instance Learning. Technical Report, Artificial Intelligence Laboratory,Department of Computer Science & Technology, Nanjing University, Nanjing, China, 2002
  • 10Zhou Z H, Zhang M L. Ensembles of Multi-Instance Learners. In: Lavrac N, Gamberger D, Blockeel H, Todorovski L, eds. Proc of the 14th European Conference on Machine Learning. Cartat-Dubrovnik, Croatia, 2003, 492-501

同被引文献87

引证文献9

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部