期刊文献+

一种基于混合概率模型的视频分割方法

A Method of Video Segmentation Based on Mixture Probability Models
在线阅读 下载PDF
导出
摘要 该文提出一种新的基于混合概率模型视频分割方法。这个方法主要利用两个概率模型:隐马尔可夫模型和概率图模型建立一个混合的贝叶斯网概率模型,对视频输入中背景变化的时间和空间局部相关性(同现性)进行学习。在建立正确模型参数的基础上,贝叶斯信念传播算法根据图像输入预测当前背景状态的后验分布。并根据预测得到的背景状态对输入图像进行分割,实验结果显示方法的有效性和在复杂背景变化下的鲁棒性。 This paper proposes an unified framework for detecting and segmenting the foreground objects in complex scenes involving swaying trees, moving shadows and ocean waves. A mixture model of hidden Markov models and probabilistic graphic models is presented to model the variation of background. In this model, the color of each pixel from backgrounds is regarded as a random variable. We employ the property that background variations at neighboring pixels have strong correlation, also known as "co - occurrence" to initialize and update the mixture model online. Bayesian belief propagation algorithm allows us to efficiently calculate the maximum of the posterior probability of background with input data in this model. Experimental results for real video demonstrate the effectiveness and robust of our method.
作者 刘震 赵杰煜
出处 《计算机仿真》 CSCD 2006年第4期192-196,273,共6页 Computer Simulation
关键词 隐马尔可夫模型 概率图模型 同现性 贝叶斯信念传播算法 前景目标的检测和分割 Hidden Markov model (HMM) Probabilistic graphical model Co -occurrence Bayesian belief propagation Foreground object detection and segmentation
  • 相关文献

参考文献20

  • 1I Haritaoglu,D Harwood and L Davis.Real-time Surveillance of People and Their Activities[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,Aug.2000,22(8):809-830.
  • 2C Stauffer and W Grimson.Learning Patterns of Activity Using Real-time Tracking[J].IEEE Trans.on Pattern Analysis and Machine Intelligence,August,2000,22(8):747-757.
  • 3K Toyama,J Krumm,B Brumitt and B Meyers.Wallflower:Principles and Practice of Background Maintenance[C].In ICCV,1999,1:255-261.
  • 4T Matsuyama,T Ohya and H Habe.Background Subtraction for Non-Stationary Scenes[C].Proc.Asian Conf.Computer Vision,2000.622-667.
  • 5N M Oliver,B Rosario,A P Pentland.A Bayesian Computer Vision System for Modeling Human Interactions[J].IEEE Trans.on Pattern Analysis and Machine.Intelligence,August 2000,22(8):831-843.
  • 6T Matsuyama,H Habe,R Yumiba,K Tanahashi.Background Subtraction under Varying Illumination[C].Proc.Of 3rd Int'l Workshop on Cooperative Distributed Vision,1999.225-246.
  • 7H Nakai.Non-Parameterized Bayes Decision Method for Moving Object Detection[C].Proc.Of Asian Conf.on Computer Vision,1995-3.447-451.
  • 8H Ukida,K Konishi,T Wada,T Matsuyama.Recovering Shape of Unfolded Book Surface from a Scanner Image using Eigenspace Method[C].Proc.of IAPRWorkshop on Machine Vision Applications,2000.463-466.
  • 9W E L Grimson,C Stauffer,R Romano,and L Lee.Using Adaptive Tracking to Classify and Monitor Activities in a Site[C].Proc.CVPR,1998.22-29.
  • 10I Haritaoglu,D Harwood,L S Davis.A Fast Background Scene Modeling and Maintenance for Outdoor Surveillance[C].Proc.of ICPR,2000,4:179-183.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部