期刊文献+

基于启发式遗传算法的SVM模型自动选择 被引量:18

Automatic model selection for support vector machines using heuristic genetic algorithm
在线阅读 下载PDF
导出
摘要 支撑矢量机(SVM)模型的自动选择是其实际应用的关键.常用的基于穷举搜索的留一法(LOO)很繁杂且效率很低.到目前为止,大多数的算法并不能有效地实现模型自动选择.本文利用实值编码的启发式遗传算法实现基于高斯核函数的SVM模型自动选择.在重点分析了SVM超参数对其性能的影响和两种SVM性能估计的基础上,确定了合适的遗传算法适应度函数.人造数据及实际数据的仿真结果表明了所提方法的可行性和高效性. Motivated by the facts that automatic model selection for support vector machine (SVM) is an important issue to make it practically useful, and the commonly-used leave-one-out (LOO) method is complex and time consuming, we proposed an effective strategy for automatic model selection for SVM with Gauss kernel by using a heuristic real-coded genetic algorithm (GA). Based on the extensive analysis of the effects of the hyper-parameters on the generalization performance and two estimates of SVM, the appropriate fitness function for GA operation is determined. Simulations are performed on both artificial data and real data to demonstrate the effectiveness and efficiency of the proposed approach. The significance of the proposed method is its easy implementation and better performances in comparison with the commonly used loo method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第2期187-192,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60133010 60372047) 西安电子科技大学博士点基金资助项目 西安电子科技大学青年工作站项目资助项目
关键词 支撑矢量机(SVM) 模型选择 模型自动选择 遗传算法 support vector machine model selection automatic model selection genetic algorithm
  • 相关文献

参考文献11

  • 1http://www.clopinet.com/isabelle/projects/SVM/applist.html[ OL/DB ].
  • 2VAPEIK V. Statistical Learning Theory [ M ]. Berlin: Springer,1998.
  • 3VAPNIK V. The Nature of Statistical Learning Theory [ M ].New York: Spring-Vcdag, 1995.
  • 4CHAPELLE O, Vapnik V. Model selection for support vector machines [M]//SOLLA S A, LEEN T K, Muller K R. Advances in Neural Information Processing Systems. Solla Cambridge, MA: MIT Press, 2000:230-236.
  • 5TSUDA K, RATSCH G, MIKA S, et al. Learning to Predict the Leave-One-Out Error of Kernel Based Classifiers[ M ]. Lecture Notes in Computer Science, 2001,2130:331 -338.
  • 6LEE J H, LIN C J. Automatic model selection for support vector machines, technical report [ R]. Taipci, Taiwan:Department of Computer Science and Information Engineering, National Taiwan University, 2000.
  • 7CHAPELLE O, VAPNIK V, BOUSQUET O, et al. Choosing multiple parameters for support vector machines [ J ]. Machine Learning, 2002, 46 (1 -3) : 131 -159.
  • 8KEERSTHI S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms [ J ]. IEEE Trans on Neural Networks, 2002, 13 (5) : 1225 - 1229.
  • 9GOLD C, SOLLICH P. Model selection for support vector machine classification [J]. Neurocomputing, 2003, 55 (1/2):221 - 249.
  • 10MICHALEWICZ Z. Genetic Algorithms + Data Structures =Evolution Programs [ M ]. 2nd ed. Berlin : Springer-Verlag,1994.

同被引文献129

引证文献18

二级引证文献140

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部