期刊文献+

AN ADAPTIVELY TRAINED KERNEL-BASED NONLINEAR REPRESENTOR FOR HANDWRITTEN DIGIT CLASSIFICATION 被引量:12

AN ADAPTIVELY TRAINED KERNEL-BASED NONLINEAR REPRESENTOR FOR HANDWRITTEN DIGIT CLASSIFICATION
在线阅读 下载PDF
导出
摘要 In practice, retraining a trained classifier is necessary when novel data become available. This paper adopts an incremental learning procedure to adaptively train a Kernel-based Nonlinear Representor (KNR), a recently presented nonlinear classifier for optimal pattern representation, so that its generalization ability may be evaluated in time-variant situation and a sparser representation is obtained for computationally intensive tasks. The addressed techniques are applied to handwritten digit classification to illustrate the feasibility for pattern recognition. In practice, retraining a trained classifier is necessary when novel data become available. This paper adopts an incremental learning procedure to adaptively train a Kernel-based Nonlinear Representor (KNR), a recently presented nonlinear classifier for optimal pattern representation, so that its generalization ability may be evaluated in time-variant situation and a sparser representation is obtained for computationally intensive tasks. The addressed techniques are applied to handwritten digit classification to illustrate the feasibility for pattern recognition.
出处 《Journal of Electronics(China)》 2006年第3期379-383,共5页 电子科学学刊(英文版)
基金 Supported by the Key Project of Chinese Ministry of Education (No.105150).
  • 相关文献

参考文献2

  • 1J.A.K. Suykens,J. Vandewalle.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters.1999(3)
  • 2Corinna Cortes,Vladimir Vapnik.Support-Vector Networks[J].Machine Learning.1995(3)

同被引文献32

  • 1李永祯,王雪松,曾勇虎,肖顺平,庄钊文.宽带雷达目标的瞬态极化时频分布表征[J].雷达科学与技术,2004,2(6):321-326. 被引量:4
  • 2孟继成,杨万麟.基于核函数的雷达一维距离像目标识别[J].电子与信息学报,2005,27(3):462-466. 被引量:9
  • 3孟庆宇,刘本永,姚宏达.基于分数本征特征的手写数字识别[J].电子科技大学学报,2006,35(3):289-291. 被引量:2
  • 4S Mika,G Ratsch,J Weston,et al.Fisher discriminant analysis with kernels[C].IEEE Int'l Workshop on Neural Networks for Signal Processing,Madison,Wisconsin,1999
  • 5V Roth,V Steinhage.Nonlinear discriminant analysis using kernel functions[C].In:Advances in Neural Information Processing System 12.Cambridge,MA:MIT Press,2000.568-574
  • 6G Baudat,F Anouar.Generalized discriminant analysis using a kernel approach[J].Neural Computation,2000,12(10):2385 -2404
  • 7J W Lu,K N Plataniotis,A N Venetsanopouts.Face recognition using kernel direct discriminant analysis algorithm[J].IEEE Trans on Neural Networks,2003,14 (1):117-126
  • 8W Liu,Y H Wang,S Z Li,et al.Null space-based kernel fisher discriminant analysis for face recognition[C].The 6th IEEE Int'l Conf Automatic Face and Gesture Recognition,Seoul,Korea,2004
  • 9V N Vapnik.The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,1995
  • 10R Huang,Q S Liu,H Q Lu,et al.Solving the small sample size problem of LDA[C].The Int'l Conf on Pattern Recognition,Quebec City,Canada,2002

引证文献12

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部