期刊文献+

进化神经网络在倒立摆控制中的应用 被引量:6

Application of Evolutionary Neural Network in Controlling Inverted Pendulum
在线阅读 下载PDF
导出
摘要 倒立摆作为典型的非线性系统,伴随着多变量、快速运动和绝对不稳定的特征,难于建立精确的数学模型,这就使得对倒立摆的控制变得异常困难和复杂。智能控制理论则是解决此问题的一个有效途径,该文针对倒立摆控制的传统神经网络算法(即BP算法)的缺点,将遗传算法与神经网络结合起来,提出了倒立摆的进化神经网络控制方法。控制器在结构上采用神经网络,利用遗传算法优化神经网络的连接权值。实验研究表明,该控制器不仅具有良好的动态和稳态控制性能,而且对于干扰也具有很强的抑制能力。同时还具备结构简单,易于实现的优点。 Inverted pendulum is a classic nonlinear system accompanied by characters of multivariable, rapid move and absolutely unstable, these make it hard to establish accurate arithmetic model. However, intelligence control theory is an effective approach for this ease. Taking account of the defects of traditional training algorithm ( namely BP algorithm) in pendulum control we put forward a method called evolutionary neural network to combine genetic algorithm with neural network. The controller's structure was based on neural network , instead of back propagation, genetic algorithm was used to optimize the weights of neural network. The experimental results illustrated that controller has not only good dynamic and static control performance but also strong capability to suppress interference. Furthermore, it has advantages of simple structure and is easy to be implemented.
作者 谢宗安 张滔
出处 《计算机仿真》 CSCD 2006年第5期297-299,306-307,共5页 Computer Simulation
关键词 遗传算法 神经网络 优化 倒立摆 Genetic algorithm Neural network Optimization Inverted pendulum
  • 相关文献

参考文献4

  • 1刘妹琴,廖晓昕,陈际达,李湘林.用进化RBF神经网络控制二级倒立摆[J].控制理论与应用,2000,17(4):593-596. 被引量:13
  • 2F Gruau.Genetic Micro Programming of Neural Networks[M].In:Genetic Programming,Loza J T 1994.117-126.
  • 3MartinTHagan.神经网络设计[M].北京:机械工业出版社,2002.197-235.
  • 4蔡自兴.智能控制[M].北京:电子工业出版社,2004..

二级参考文献2

共引文献162

同被引文献38

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部