期刊文献+

基于纳米ZnO气体传感器阵列的乙醇、丙酮、苯、甲苯、二甲苯的识别研究 被引量:19

Recognition of Ethanol, Acetone, Benzene, Toluene and Xylene Using Nano ZnO Gas Sensor Array
在线阅读 下载PDF
导出
摘要 采用6个不同掺杂的纳米ZnO气体传感器组成的阵列实现了乙醇、丙酮、苯、甲苯、二甲苯的识别。研究表明,掺杂可大幅度提高传感器的敏感度和对可挥发有机物(VOCs)的选择性。对比了k近邻法、线性判别法、反传人工神经网络、概率神经网络、学习向量量化等在本实验中的应用。反传人工神经网络具有最高识别率,可达100%。本研究表明电子鼻在空气质量监测中具有广阔的应用前景。 Recognition of ethanol, acetone, benzene, toluene and xylene was performed by using 6 doped nano ZnO gas sensors. It was proved that sensitivities and selectivity of gas sensors could be reasonably improved by dopants. K-nearest neighbour (k-NN), linear discriminant analysis (LDA), back-propagation artificial neural network (BP-ANN), probabilistic neural network (PNN) and learning vector quantization (LVQ) were compared for their suitability on classifying volatile organic compounds (VOCs). The accuracy of BP-ANN in terms of predicting tested samples was 100% and the highest among the pattern recognition algorithms. This work shows the potential application of the gas sensor arrays for monitoring the air quality.
出处 《传感技术学报》 CAS CSCD 北大核心 2006年第3期552-554,558,共4页 Chinese Journal of Sensors and Actuators
关键词 气体传感器阵列 可挥发有机物(VOCs) 模式识别 gas sensor array volatile organic compounds (VOCs) pattern recognition
  • 相关文献

参考文献12

  • 1Chen T Y, Li M J and Wang J L.Sub-Second Thermal Desorption of a Micro-Sorbent Trap for the Analysis of Ambient Volatile Organic Compounds [J]. J. Chromatography A,2002, 976:39-45.
  • 2殷永泉,马桂霞,朱传友,李昌梅.毛细管气相色谱监测空气中苯、甲苯和二甲苯[J].实验室研究与探索,2005,24(4):25-27. 被引量:8
  • 3邹小波,吴守一,方如明.电子鼻判别挥发性气体的实验研究[J].江苏理工大学学报(自然科学版),2001,22(2):1-4. 被引量:27
  • 4张良谊,温丽菁,周峰,张松,杨芃原.用于测定空气中甲醛的电子鼻[J].高等学校化学学报,2003,24(8):1381-1384. 被引量:20
  • 5Lee D S, Jung J K, Lim J W. et aL Recognition of Volatile Organic Compounds Using SnO2 Sensor Array and Pattern Recognition Analysis [J]. Sensors and Actuators B, 2001, 77:228-236.
  • 6Szczurek A and Maciejewska M. Recognition of Benzene, Toluene and Xylene Using TGS Array Integrated with Linear and Non-linear Classifier [J]. Talanta, 2004, 64:609-617.
  • 7Horrillo M C, Fernandez M J, Fontecha J L. et al. Detection of Volatile Organic Compounds Using Surface Acoustic Wave Sensors with Different Polymer Coatings [J]. Thin Solid Films, 2004, 467:234-238.
  • 8Zhu B L, Xie C S, Wang W Y. et al.Improvement in Gas Sensitivity of ZnO Thick Film to Volatile Organic Compounds (VOCs)by Adding TiO2[J]. Materials Letters, 2004, 58:624-629.
  • 9Zhu B L, Xie C S, Zeng D W. et al. Investigation of Gas Sensitivity of Sb-Doped ZnO Nanoparticles [J]. Materials Chemistry Physics, 2005, 89:148-153.
  • 10王林,张覃轶,祝柏林,王爱华,谢长生.激光烧结纳米ZnO气敏传感器制备及其气敏特性研究[J].传感技术学报,2003,16(4):491-494. 被引量:12

二级参考文献26

  • 1冯伟,高大启,胡上序.人工嗅觉传感阵列技术和模式分类方法的新进展[J].分析化学,1996,24(7):848-852. 被引量:6
  • 2高大启.基于神经网络的模式分类方法[M].杭州:浙江大学,1996.8-12.
  • 3康昌鹤 唐省吾.气、湿敏感器件及其应用[M].北京:科学出版社,1985.64-69.
  • 4高大启.基于人工嗅觉的卷烟内在质量分析方法与装置[M].镇江:江苏理工大学,1998..
  • 5Bicego M, Tessari G, Tecchiolli G, et al. A comparative analysis of basic pattern recognition techniques for the development of small size electronic nose[J]. Sensors and Actuators B, 2002, 85:137-144.
  • 6Yolanda G M, Concepcion C O, Jose L P P, et al. Electronic nose based on metal oxide semiconductor sensors and pattern recognition techniques: characterization of vegetable oils[J]. Analytica Chimica Acta, 2001, 449:69-80.
  • 7Claude D, Martine L, Maryam S. Discrimination and identification of a refrigerant gas in a humidity controlled atmosphere containing or not carbon dioxide: application to the electronic nose[J]. Sensors and Actuators B, 2004, 98:46-53.
  • 8Lee D S, Huh J S, Lee D D. Classifying combustible gases using micro-gas sensor array[J]. Sensors and Actuators B, 2003, 93:1-6.
  • 9Dutta R, Hines E L, Gardner J W, et al. Tea quality prediction using a tin oxide-based electronic nose: an artificial intelligence approach[J]. Sensors and Actuators B, 2003, 94:228-237.
  • 10Gardner J W, Shin H W, Hines E L, et al. An electronic nose system for monitoring the quality of potable water[J]. Sensors and Actuators B, 2000, 69:336-341.

共引文献90

同被引文献211

引证文献19

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部