期刊文献+

桥墩安全监测系统中背景重建技术的研究 被引量:1

Application of Video Surveillance Technology in Pier Safety Monitoring
在线阅读 下载PDF
导出
摘要 长江航道上船撞桥的事故时有发生,对船舶和桥梁的安全都构成了极大的危害。为此,文中基于视频图像技术设计了视频监控的桥墩防撞监控系统,并重点讨论了Ostu图像分割的算法。在此基础上,文中利用Kalman滤波对算法进行了改进。该方法比传统的背景提取算法具有更好的适时效果。系统设计利用了Intel公司的开放源代码视频图像处理工具包OpenCV。 The accidents of the ships bumping on the pier occur from time to time,and such accidents bring much harm to the ships and the pier. Therefore, present a new scheme based On video technology to monitor the pier safety, and illuminate the algorithm Ostu using in this paper. Based on them, improve the method by using Kalman algorithm. The algorithm obtained better results than the traditional algorithms. Open source computer vision library(OpenCV) by Intel is used to develop the video processing system.
出处 《计算机技术与发展》 2006年第6期23-25,共3页 Computer Technology and Development
基金 教育部跨世纪优秀人才培养计划项目(2003714)
关键词 背景提取 阈值 OSTU 卡尔曼滤波 OPENCV background construction threshold Ostu Kalman OpenCV
  • 相关文献

参考文献5

  • 1吴祖林,沈庆宏,都思丹,高敦堂.背景提取基础上运动车辆视频检测[J].交通与计算机,2003,21(6):18-20. 被引量:12
  • 2方敏,徐俊艳,王建平,刘泓.一种新的文本图像二值化方法[J].合肥工业大学学报(自然科学版),2001,24(2):166-169. 被引量:18
  • 3Leung H,Young A.Small target detection in clutter using recursive nonlinear prediction[J].IEEE Trans on Aerospace and Electronic Systems,2000,36(2):713-718.
  • 4Meier T,Ngan K N.Automatic segmentation of moving objects for video object plane generation[J].Circuits and Systems for Video Technology,1998,8(5):525-538.
  • 5Intel Corporation.Open Source Computer Vision Reference Man-ual[EB/OL].Http://www.Intel.Com/research/mrl/research/OpenCV/,2000-12-08.

二级参考文献4

共引文献28

同被引文献10

  • 1杨春金,朱群英.基于图像处理的桥墩防撞预警系统的研究[J].舰船电子工程,2005,25(6):63-67. 被引量:3
  • 2Tsong-Yi Chen, Wen-Sheng Chen, Thou-Ho (Chao- Ho) Chen, et al. Automatic Ship Flow Analysis and Counting System in a Specific Sea-Area Based 011 Video Processing[C]//The 16th National Conference on Automation Technology. GaoXiong, 2008: 696- 702.
  • 3M. Heikkila, M. Pietikainen, D. Harwood. A Texture-Based Method for Detecting Moving Objects[C]// Proc 15th British Machine Vision Conference. London, UK, 2004,1: 187-196.
  • 4M. Heikkila, M. Pietikainen. A Texture-Based Method for Modeling the Background and Detecting Moving Objects[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006,28 : 657-662.
  • 5Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction[C]//Proceeding of the 17th International Conference on Pattern Recognition, Cambridge UK,2004:28-31.
  • 6Elgammal A, Duraiswami R, Harwood D, et al. Background and Foreground Modeling Using Nonparametric Kernel Density Estimation for Visual Surveillance[J]. Proceedings of the IEEE, 2002,90(7): 1151-1163.
  • 7Sheikh Y, Shah M. Bayesian modeling of dynamic scenes for object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 (11) : 1778-1792.
  • 8王勇,谭毅华,田金文.基于阴影消除和混合高斯模型的视频分割算法[J].光电工程,2008,35(3):21-25. 被引量:14
  • 9汤一平,柳圣军,周超,严海东,金海民,朱艺华.多视觉信息融合的内河航道智能监控系统[J].中国图象图形学报,2008,13(8):1608-1616. 被引量:17
  • 10项海帆,范立础,王君杰.船撞桥设计理论的现状与需进一步研究的问题[J].同济大学学报(自然科学版),2002,30(4):386-392. 被引量:90

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部