期刊文献+

BP神经网络在大跨斜拉桥的斜拉索损伤识别中的应用 被引量:32

Application of BP neural network to cable damage identification for long span cable-stayed bridges
在线阅读 下载PDF
导出
摘要 针对润扬长江公路大桥北汊斜拉桥的拉索损伤进行了520种工况的动力计算。定义了归一化固有频率,并且分别分析了拉索损伤位置和损伤程度对归一化固有频率的影响。通过对比研究得出以下结论:拉索损伤位置对不同阶固有频率的影响模式有本质的差异;同一拉索位置处,不同的损伤程度对各阶固有频率的影响模式相似;第4、6、7阶归一化频率对拉索损伤位置不敏感;其他各阶归一化固有频率的分布较为开展,分别包含了损伤模式的个性化信息。据此建立了描述7维损伤模式映射空间的BP神经网络,分别采用不同工况组的数据进行训练和识别,对该方法进行了验证。并且定义了识别误差评价数作为描述识别效果的定量指标。 The author calculated 520 cable-damage cases of the Runyang cable-stayed Bridge (north bridge)crossing the Yangtse River. By defining a normalized natural frequency, one may find the location and extent of cable damage with respect to the changes on the normalized nature frequency. Careful comparison reveals the following: ①There is intrinsic difference in the patterns of location versus frequency, whereas the patterns of extent versus frequency are similar;②While the fourth, sixth and seventh frequencies are not sensitive to cable damage location, the distribution patterns of the other frequencies describing the 7-dimension mapping space of damage patte based on the different damage cases validated the method, defined to quantify the identification effect. are rather spread. There upon, a BP neural network m was founded. The neural and an evaluation number training and identification of identification error was defined to quantify the identification effect.
出处 《土木工程学报》 EI CSCD 北大核心 2006年第5期72-77,95,共7页 China Civil Engineering Journal
基金 国家自然科学基金(50378017)
关键词 斜拉桥 BP网络 损伤识别 拉索损伤 cable-stayed bridge BP neural network damage identification cable damage
  • 相关文献

参考文献10

  • 1Hagan M T,Howard B D,Mark B.Neural network design[M].USA,PWS Publishing Company,1996
  • 2Venkatasubramanian V,Chan K.A neural network methodology for process fault diagnosis[J].AIChE Journal,1989,35(12):1993-2002
  • 3Wu X,Ghaboussi J,Garrett J H.Use of neural networks in detection of structural damage[J].Computers & Structures,1992,42 (4):649-659
  • 4Kirkegaard P H,Rytter A.Use of neural networks for damage detection and location in a steel member[C]//Proc.of the3rd International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering,Edinburgh,1993
  • 5Anatharamn S,Johnson V T.Damage assessment of composite structures-A fuzzy logic integrated neural network approach[J].Computer & Structures,1995,57 (3):491-502
  • 6Elkordy M F,Chang K C,Lee G C.Application of neural networks in vibrational signature analysis[J].Journal of Engineering Mechanics,1994,120 (2):250-265
  • 7Nakamura M,Masri F,Anatassios G,et al.A method for nonparametric damage detection through the use of neural networks[J].Earthquake Engineering and Structural Dynamics,1998,27 (9):997-1010
  • 8Chen S S,Kim S.Neural-network-based signal monitoring in a smart structural system[C]//North American Conference on Smart Structures and Materials 1994:Smart Sensing,Processing and Instrumentation,1994:176-186
  • 9PandeyP C,Barai S V.Multilayer perceptron in damage detection of bridge structures[J].Computers & Structures,1995,54 (4):597-608
  • 10Russell S,Norvig P.Artificial Intelligence:A Modern Approach[M].Prentice Hall,1995

同被引文献316

引证文献32

二级引证文献104

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部