期刊文献+

流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ) 被引量:20

Flow-Induced Internal Resonances and Mode Exchange in Horizontal Cantilevered Pipe Conveying Fluid(Ⅱ)
在线阅读 下载PDF
导出
摘要 基于得到的水平悬臂输液管非线性动力学控制方程,详细研究了由流速最小临界值诱发的3∶1内共振.通过观察内共振调谐参数、主共振调谐参数和外激励幅值的变化,发现在内共振临界流速附近,流速导致系统出现模态转换、鞍结分岔、Hopf分岔、余维2分岔和倍周期分岔等非线性动力学行为,对应的管道系统的周期运动失稳出现跳跃、颤振和更加复杂的动力学行为.通过理论结果与数值模拟比较,表明了理论分析的有效性和正确性. The Newtonian method is employed to obtain nonlinear mathematical model of motion of a horizontally cantilevered and inflexible pipe conveying fluid, The Order magnitudes of relevant physical parameters are analyzed qualitatively to establish a foundation on the fuither study of the model. The method of multiple scales is used to obtain eigenfunctions of the linear flee-vibration modes of the pipe. The boundary conditions yield the characteristic equations from which eigenvalues can be derived. It is found that flow velocity in the pipe may induced the 3:1, 2: 1 and 1 : 1 internal resonances between the first and second modes such that the mechanism of flow-induced internal resonances in the pipe under consideration is explained theoretically. The 3:1 internal resonance first occurs in the system and is, thus, the most important since it corresponds to the minimum critical velocity.
作者 徐鉴 杨前彪
出处 《应用数学和力学》 CSCD 北大核心 2006年第7期819-824,共6页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10472083) 国家自然科学基金(重点)资助项目(10532050)
关键词 输液管 内共振 稳定性 分岔 pipe conveying fluid internal resonance stability bifurcation
  • 相关文献

参考文献18

  • 1Long R H. Experimental and theoretical study of trans-verse vibration of a tube containing flowing fluid[ J ]. Journal of Applied Mechanics, 1955,77 (1) : 65-68.
  • 2Handelman G H. A note on the transverse vibration of a tube containing flowing fluid[ J]. Quarterly of Applied Mathematics, 1955,13(3):326-330.
  • 3Naguleswaran S, Williams C J H. Lateral vibrations of a pipe conveying a fluid[ J ]. Journal of Mechanical Engineering Science, 1968,10(2) :228-238.
  • 4Stein R A, Torbiner W M. Vibrations of pipes containing flowing fluids[ J]. Journal of Applied Mechanics, 1970,37(6) : 906-916.
  • 5Paidoussis M P, Laithier B E. Dynamics of Timoshenko beams conveying fluid[ J]. Journal of Mechanical Engineering Science, 1976,18(2) :210-220.
  • 6Paidoussis M P, Luu T P, Laithier B E. Dynamics of finite-length tubular beams conveying fluid[J]. Journal of Sound and Vibration, 1986,106(2) :311-331.
  • 7Lee U, Pak C H, Hong S C. The dynamics of piping system with internal unsteady flow[ J]. Journal of Sound and Vibration, 1995,180(2) :297-311.
  • 8Holmes P J. Bifurcations to divergence and flutter in flow-induced oscillations: a finite-dimensional analysis[J]. Journal of Sound and Vibraion , 1977,53(4) :471-503.
  • 9Rousselet J, Hemnann G. Dynamic behaviour of continuous cantilevered pipes conveying fluid near critical velocities[ J ]. Journal of Applied Mechanics, 1981,48(6 ) :943-947.
  • 10Paidoussis M P, Li G X. Pipes conveying fluid: a model dynamical problem[ J]. Journal of Fluid and Structures, 1993,7 (2) : 137-204.

二级参考文献30

  • 1徐鉴,杨前彪.输液管模型及其非线性动力学近期研究进展[J].力学进展,2004,34(2):182-194. 被引量:39
  • 2徐鉴,杨前彪.流体诱发水平悬臂输液管的内共振和模态转换(Ⅱ)[J].应用数学和力学,2006,27(7):819-824. 被引量:20
  • 3Long R H. Experimental and theoretical study of trans-verse vibration of a tube containing flowing fluid[ J ]. Journal of Applied Mechanics, 1955,77 (1) : 65-68.
  • 4Handelman G H. A note on the transverse vibration of a tube containing flowing fluid[ J]. Quarterly of Applied Mathematics, 1955,13(3):326-330.
  • 5Naguleswaran S, Williams C J H. Lateral vibrations of a pipe conveying a fluid[ J ]. Journal of Mechanical Engineering Science, 1968,10(2) :228-238.
  • 6Stein R A, Torbiner W M. Vibrations of pipes containing flowing fluids[ J]. Journal of Applied Mechanics, 1970,37(6) : 906-916.
  • 7Paidoussis M P, Laithier B E. Dynamics of Timoshenko beams conveying fluid[ J]. Journal of Mechanical Engineering Science, 1976,18(2) :210-220.
  • 8Paidoussis M P, Luu T P, Laithier B E. Dynamics of finite-length tubular beams conveying fluid[J]. Journal of Sound and Vibration, 1986,106(2) :311-331.
  • 9Lee U, Pak C H, Hong S C. The dynamics of piping system with internal unsteady flow[ J]. Journal of Sound and Vibration, 1995,180(2) :297-311.
  • 10Holmes P J. Bifurcations to divergence and flutter in flow-induced oscillations: a finite-dimensional analysis[J]. Journal of Sound and Vibraion , 1977,53(4) :471-503.

共引文献92

同被引文献147

引证文献20

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部