期刊文献+

基于网络测量和模糊控制技术的拥塞控制机制 被引量:6

Congestion Control Scheme Based on Network Measurement and Fuzzy Logic Control Technology
在线阅读 下载PDF
导出
摘要 为向端系统反馈及时准确的网络状态以提高TCP效率,同时避免主动队列管理(AQM)机制的诸多局限,提出一种基于网络测量的拥塞控制机制———利用分布在网络中的测量设施监测主干链路,再根据链路性能采用模糊控制技术指导端系统选择适当的FAST控制参数.仿真实验表明,该机制能承受更大的负载压力,达到高吞吐量,并能稳定排队时延,在高速网络中比AQM机制更稳定、更公平.相比突发性的W eb流量来说,该机制更适用于类似P2P等数据量大、连接持续时间长的流量的拥塞控制. A network-measurement-based congestion control from the AQM (Active Queue Management) mechanism and and correct information on network states to end systems. In scheme is proposed to avoid the limitations resulting improve the TCP performance by feeding back timely the proposed scheme, the measurement facilities distributed in networks are exploited to acquire the performance of network backbone, and according to the resulting data a fuzzy logic controller is used to help end systems determine the appropriate FAST control parameters. Simulation experiments indicate that the proposed scheme can support extremely heavy load, achieve high throughput, and steady the queuing delay. Moreover, it behaves more stably and fairly than the AQM scheme in high-speed networks, and is more suitable for P2P-like large-volume long-lived flows rather than Web-like bursty traffic.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第6期89-94,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(90304016)
关键词 网络测量 模糊控制 拥塞控制 吞吐量 排队时延 network measurement fuzzy logic control congestion control throughput queuing delay
  • 相关文献

参考文献8

  • 1Jin C, Wei D, Low S. Fast TCP: motivation, architecture,algorithms,performance [C]//Zhang Z. Proc of IEEE Info Com' 2004. HongKong,2004:2490-2501.
  • 2Chen M, Zhang R, Song L, et al. UNM : an architecture of the universal policy-based network measurement system[C]//Rouskas G. Proc of 13th IEEE Workshop on LAN-MAN. San Francisco, 2004 : 253-258.
  • 3Floyd S, Gumrnadi R, Shenker S. Adaptive RED : an algorithm for increasing the robustness of RED's active queue management [EB/OL] .( 2001-08-01 ). http://www.icir.org/floy/papers/adaptiveRed.pdf.
  • 4Athuraliya S, Low S, Li V, et al. REM active queue management [J]. IEEE Network Magazine,2001,15 (3) :48-53.
  • 5Peterson L, Davie B. Computer networks: a system approach[M]. California: Morgan Kaufmann Publishers, 2000: 454-457.
  • 6Sen S, Jia W. Analyzing peer-to-peer traffic across large networks [J]. ACM/IEEE Transactions on Networking,2004,12(2) :219-232.
  • 7Floyd S, Jacobson V. Random early detection gateways for congestion avoidance [J]. IEEE/ACM Transactionson Networking, 1993,1 (4) : 397- 413.
  • 8Athuraliya S, Low S. Optimization-flow control,Ⅱ: imple mentation [ EB/OL ]. ( 2002-02-07 ). http://netlab. caltech.edu/pub/papers/rem2.ps.gz.

同被引文献50

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部