期刊文献+

基于分形理论多孔质石墨渗透率的研究 被引量:5

RESEARCH ON PERMEABILITY OF POROUS GRAPHITE BASED ON FRACTAL THEORY
在线阅读 下载PDF
导出
摘要 针对用于多孔质气体静压轴承的多孔质石墨结构的复杂性,从其结构形成机理出发,利用分形几何理论, 对多孔质气体静压轴承性能的影响起至关重要作用的渗透率进行研究,并建立多孔质石墨渗透率与其分形维数之间的定量关系,使多孔质石墨的宏观参数与微观结构建立联系。利用Matlab软件编写的程序,对多孔质石墨的组织结构进行分析,确定孔隙的分形维数,通过模型求得多孔质石墨的渗透率,并通过试验验证了模型的正确性。 The microstructure of graphite used to the porous aerostatic bearing is greatly complicated. From the formative mechanism of microstructure, the fractal geometry theory is adopted to study the permeability, which is very important to the performance of porous aerostatic bearing. Furthermore, the relation between the porous graphite permeability and the fractal dimension is established. And the correlation of the macroscopical parameter with the microstructure is presented. Finally, the microstructure of the porous graphite is analyzed by the program of Matlab and the permeability is obtained. The experimental results agree with the theoretical results.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2006年第B05期74-77,共4页 Journal of Mechanical Engineering
关键词 静压轴承 多孔质石墨 孔隙度 渗透率 Static bearing Porous graphite Porosity Permeability
  • 相关文献

参考文献9

  • 1POWELL J W. Design of aerostatic bearing[M]. London:The Machinery Publishing Co. Ltd, 1970.
  • 2杜金名,卢泽生,孙雅洲.气体静压小孔节流与多孔质节流性能的比较[J].润滑与密封,2002,27(4):2-3. 被引量:10
  • 3CELZARD A, MARECHE J F, PERRIN A. Transport in porous graphite: gas permeation and ion diffusion experiments[J]. Fuel Processing Technology, 2002, 77-78:467-473.
  • 4BILOE S, MAURAN S. Gas flow through highly porous graphite matrices[J]. Carbon, 2003, 41 : 525-537.
  • 5MAURAN S, RIGAUD L, COUDEVYLLE O. Application of the Carman-Kozeny correlation to a high-porosity and anisotropic consolidated medium: the compressed expanded natural graphite[J]. Transport in Porous Media,2001, 43: 355-376.
  • 6KANG F Y, ZHENG Y P, WANG H N, et al. Effect of preparation conditions on the characteristics of exfoliated graphite[J]. Carbon, 2002, 9: 1575-1581.
  • 7CARMAN P C. Fluid flow through a franular bed[J].Trans.Inst.Chem.Eng., 1937, 15: 150-156.
  • 8MANDELBROT B B. The fractal geometry of nature[M].San Francisco: Freemen, 1982.
  • 9刘晓丽,梁冰,薛强.多孔介质渗透率的分形描述[J].水科学进展,2003,14(6):769-773. 被引量:32

二级参考文献8

共引文献40

同被引文献33

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部