期刊文献+

源自硫化矿区的氧化亚铁硫杆菌新菌系的鉴定 被引量:8

Identification of new-subspecies Acidithiobacillus ferrooxidans strain from complex sulfide mines
在线阅读 下载PDF
导出
摘要 从广西铜坑矿区多金属复杂硫化矿矿坑水中分离得到了一株嗜酸氧化亚铁硫杆菌(暂命名为TK),该菌株为革兰氏阴性细菌,短杆状,菌体大小为(0.4±0.1)μm×(1.4±0.2)μm,最适生长温度为25~30℃,最适pH值为2.0,化能自养型,能利用亚铁、单质硫和葡萄糖生长,不能利用硫代硫酸钠、蛋白胨生长。测定其亚铁和元素硫的氧化能力,并考察它对铁闪锌矿的浸出效果。以16SrDNA序列同源性为基础构建了包括15株已报道菌种和其他菌属菌株作为外来群在内的系统发育树。结果表明:TK菌株处于单独的一个分支内,与嗜酸氧化亚铁硫杆菌株D2最为相似,相似性为98.67%,推测TK菌株为嗜酸氧化亚铁硫杆菌的一个新菌系。该菌系的分离为嗜酸氧化亚铁硫杆菌多样性和生态分布研究提供了一种新材料。 An Acidithiobacillus ferrooxidans strain TK was isolated from the Tong Ken area, Guangxi province in China. The cell of TK strain is Gram negative and rod-shaped in (0.4±0.1) μm×(1.4±0.2) μm. The optimum growth temperature is 25 - 30℃, and the optimum growth pH is 2.0. The TK strain can grow autographically by using Fe^2+ , sulfur, glucose as sole energy sources, however, can not grow with NaS2O3 and peptone. The oxidation of Fe^2+ , sulfur and bioleaching marmatite with this strain was studied. A phylogenetic tree was constructed by comparing with the published 16SrDNA sequences of the relative bacteria species. In the phylogenetic tree, the TK strain is in a new branch which has the closest relative to the Acidithiobacillus ferrooxidans strain D2 with 98.67 % sequence similarity. These results reveal that the TK strain may be a new strain of Acidithiobacillus ferrooxidans. It offers a new material in order to study the polymorphism and bionomics of bioleahing microbes.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2006年第6期1094-1099,共6页 The Chinese Journal of Nonferrous Metals
基金 国家创新研究群体科学基金资助项目(50321402) 国家重点基础研究发展规划资助项目(2004CB619201)
关键词 嗜酸氧化亚铁硫杆菌 生物浸出 系统发育树 16SrDNA Acidithiobacillus ferrooxidans (A. f) bioleaching phylogenetic tree 16SrDNA
  • 相关文献

参考文献17

  • 1Kelly D P,Wood A P.Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov.,Halothiobacillus gen.nov.and Thermithiobacillus gen.nov.[J].International Journal of Systematic and Evolutionary Microbiology,2000,50:489-500.
  • 2Temple K L,Colmer A R.The autotrophic oxidation of iron by a new bacterium Thiobacillus ferrooxidans[J].Journal of Bacteriolgy,1951,61:605-611.
  • 3Rawlings D E.Heavy metal mining using microbes[J].Annual Review Microbiology,2002,56:65-91.
  • 4SHI Shao-yuan,FANG Zhao-heng.Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans[J].Hydrometallurgy,2004,75:1-10.
  • 5Nestor D,Valdivia U,Chaves A P.Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans[J].International Journal of Mineral Processing,2001,62:187-198.
  • 6Brierley J A,Brierley C L.Present and future commercial applications of biohydrometallurgy[J].Hydrometallurgy,2001,59:233-239.
  • 7Acharya C,Kar R N,Sukla L B.Bacterial removal of sulphur from three different coals[J].Fuel,2001,80:2207-2216.
  • 8Baker B J,Banfield J F.Microbial communities in acid mine drainage[J].FEMS Microbiology Ecology,2003,44:139-152.
  • 9Silverman M P,Lundgren D C.Study on the chemoautotrophic iron bacterium ferrobacillus ferrooxidans(Ⅰ):an improved medium and harvesting procedure for securing high cell yield[J].Journal of Bacteriology,1959,77:642-647.
  • 10张在海,邱冠周,胡岳华,柳建设.氧化亚铁硫杆菌的菌落分离研究[J].矿产综合利用,2001(1):19-23. 被引量:36

二级参考文献26

  • 1Donovan P Kelly, Ann P Wood. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov.. International Journal of Systematic and Evolutionary Microbiology, 2000,50 : 489 - 500.
  • 2Kenneth L Temple, Arthur R Colmer. The autotrophic oxidation of iron by a new bacterium Thiobacillus ferrooxidans. Journal of Bacteriolgy, 1951, 61: 605-611.
  • 3David Nestor, Urquizo Valdivia, Arthur Pinto Chaves. Mechanisms of bioleaching of a refractory mineral of gold with Thiobacillus ferrooxidans. International Journal of Mineral Processing,2001,62:187-198.
  • 4Z Sadowski, E Jazdzyk, H Karas. Bioleaching of copper ore flotation concentrates. Minerals Engineering, 2003,16,51 - 53.
  • 5O Acharya, R N Kar, L B Sukla. Bacterial removal of sulphur from three different coals. Fuel, 2001,80:2207-2216.
  • 6Tateo Yamanaka, Yoshihiro Fukumori. Molecular aspects of the electron transfer system which participates in the oxidation of ferrous ion by Thiobacillus ferrooxidans. FEMS Microbiology Reviews,1995, 17: 401-413.
  • 7Evgeni Selkov, Ross Overbeek, Yakov Kogan, Lien Chu,Veronika Vonstein, David Holmes, Simon Silver, Robert Haselkorn, Michael Fonstein. Functional analysis of gapped microbial genomes:Amino acid metabolism of Thiobacillus ferrooxidans. Proceedings of the National Academy of Science, 2000,97(7) : 3509-3514.
  • 8Douglas E Rawlings. The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic.iron-or sulfur-oxidizing bacteria. Hydrometallurgy, 2001, 59:187-201.
  • 9John F Hall, S Samar Hasnain,W John Ingledew. The structural gene for rusticyanin from Thiobacillus ferrooxidans:cloning and sequencing of the rusticyanin gene. FEMS Microbiology Letters,1996, 137:85-89.
  • 10Abderrahmane Bengrine, Nicolas Guiliani, Corinne Appia-Ayme,Eugenia Jedlicki, David S Holmes, Marc Chippaux, V Bonnefoy. Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidens ATCC33020 strain. Biochimiceet Biophysice Acta, 1998,1443( 1 ):99- 112.

共引文献41

同被引文献76

引证文献8

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部