期刊文献+

Buckley-James模型在生存分析中的应用 被引量:1

Application of Buckley-James model in survival analysis
在线阅读 下载PDF
导出
摘要 目的探讨Buckley-James模型在生存分析中的应用。方法介绍Buckley-James模型的计算、发展以及程序的实现,用一实例比较了Buckley-James模型和Cox模型。结果在不符合比例风险的前提下,Buckley-James模型的结果要比Cox模型准确。结论Buckley-James模型有着很好的统计学特性,它是Cox模型在不满足比例风险假定时的主要替代模型之一。 Objective To explore the application of Buckley-James model in survival analysis. Methods We introduce the algorithm, development and the computer program of Buckley-James model and compare it with Cox model through a real example. Results The results of Buekley-James model is more reliable than Cox model when dissatisfying the proportional hazard assume. Conclusion Buckley-James model showed good statistical properties under usual regularity conditions, and was used as an alternative to the popular Cox model when dissatisfying the proportional hazard assume.
作者 陈兵 骆福添
出处 《中国医院统计》 2006年第2期138-140,共3页 Chinese Journal of Hospital Statistics
关键词 Buckley-James模型 COX模型 比例风险 生存分析 Buckley-James model Cox model Survival analysis Proportional hazard
  • 相关文献

参考文献12

  • 1赵耐青,高峻.多结局Cox模型在医学中的应用和Stata实现[J].中国医院统计,2004,11(4):305-308. 被引量:3
  • 2谭慭莘,田考聪.数学模型在人群疾病预测研究中的应用[J].中国医院统计,2005,12(1):83-85. 被引量:22
  • 3Buckley,J.,James,I.Linear regression with censored data[J].Biometrika,1979,66:429-436.
  • 4Weissfeld,L,A.,Schneider,H.Inferences based on the Buckley-James procedure[J].Communications in Statistics,1987,16:177-187.
  • 5Heller,G.,Simonoff,J,S.Prediction in censored survival data:acomparison of proportional hazards and linear regression models[J].Biometrics,1992,48:101-115.
  • 6Aitkin,M,A.note on the regression analysis of censored data[J].Technometrics,1981,23:161-163.
  • 7Koul,H.et al.Regression analysis with randomly censored data[J].Ann.Statist,1981,8:1276.
  • 8Leurgans,S.Linear models,random censoring and synthetic data[J].Biometrika,1987,74:301-309.
  • 9Stare,J.,Harrell,F,E.,Heinzl,H.BJ:an S-Plus program to fit linear regression models to censored data using the Buckley-James method[J].Comput Methods Programs Biomed,2001,64(1):45-52.
  • 10Miller,R.G.,Halpern,J.Regression with censored data[J].Biometrika,1982,69:521-31.

二级参考文献23

  • 1李应光,王红军,陈国华.应用灰色数列预测模型预测细菌性痢疾发病趋势[J].中国医院统计,1998,5(4):209-211. 被引量:2
  • 2茆诗松(译),寿命数据中的统计模型和方法,1998年,343页
  • 3余松林,临床随访资料的统计分析方法,1991年,130页
  • 4Le-Strat,-Y. Carat,-F. Monitoring epidemiological surveillance data using hidden Markov models. Stat-Med, 1999,18 ( 24 ) :3463-3478.
  • 5Masanao Aoki. State Space Modeling of Time Series.
  • 6Ghahramani,-Z. Variation learning for switching state-space models. Neural-Compute,2000,12 ( 4 ) :831-864.
  • 7Penny,-W-D. Roberts,-S-J. Dynamic models for no stationary signal segmentation. Compute-Biomed-Res, 1999,32 ( 6 ) :483-502.
  • 8Helfenstein V. Box-Jenkins modeling in medical research. stat methods med res,1996,5( 1 ) :3-22.
  • 9郭祖超.医用数理统计方法[M].北京:人民卫生出版社,1988.420-448.
  • 10Box,G.E.P,Jenkins,G.M,&Reinsel,G,C.Time Series Analysis:Forecasting and Control(3 rd Edition).LA:Prentice-Hall,Inc,1994.

共引文献42

同被引文献11

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部