期刊文献+

CONSERVATIVE DIFFERENCE SCHEME BASED ON NUMERICAL ANALYSIS FOR NONLINEAR SCHRDINGER EQUATION WITH WAVE OPERATOR 被引量:2

基于带波动算子非线性Schrdinger方程数值分析的守恒差分算法(英文)
在线阅读 下载PDF
导出
摘要 A new conservative finite difference scheme is presented based on the numerical analysis for an initialboundary value problem of a class of Schroedinger equation with the wave operator. The scheme can be linear and implicit or explicit based on the parameter choice. The initial value after discretization has second-order accuracy that is consistent with the scheme accuracy. The existence and the uniqueness of the difference solution are proved. Based on the priori estimates and an inequality about norms, the stability and the convergence of difference solutions with the second-order are proved in the energy norm. Experimental results demonstrate the efficiency of the new scheme. 对一类带波动算子的非线性Schro。dinger方程进行了数值分析,提出了一个含参数的二阶守恒差分格式,根据参数选取的差异,该格式既可隐式计算也可显式计算。对初值条件进行了中心差分离散,使其具有二阶精度,从而与守恒格式的精度一致。利用矩阵理论证明了差分解的存在惟一性,并利用一个重要的不等式在先验估计的基础上,运用能量估计的方法证明了该格式按无穷范数以二阶精度收敛到真实解。数值实验表明该格式具有较高的计算效率。
出处 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第2期87-93,共7页 南京航空航天大学学报(英文版)
基金 国家自然科学基金(10471023,10572057)资助项目~~
关键词 Schroedinger equation difference scheme CONSERVATION existence and uniqueness of solution CONVERGENCE Schrodinger方程 差分格式 守恒 惟一可解性 收敛性
  • 相关文献

同被引文献24

  • 1李淑萍,王兆清,唐炳涛.重心插值配点法求解初值问题[J].山东建筑大学学报,2007,22(6):481-485. 被引量:20
  • 2GUO B L, LIANG H X. On the problem of numerical calculation for a class of the system of nonlinear Schrbdinger equations with wave operator [J]. Journal on Numerical Methods and Computer Applications, 1983(4): 258-263.
  • 3ZHANG F, PER]Z-GGARCIA V M, V-ZQUEZ L. Numerical simulation of nonlinear SchrSdinger equation system: A new conservative scheme [J]. Applied Mathematics and Computation, 1995, 71: 165-177.
  • 4CHANG Q S, JIA E, SUN W. Difference schemes for solving the generalized nonlinear Schrbdinger equation [J]. Journal of Computational Physics, 1999, 148(2): 397-415.
  • 5ZHANG L M, CHANG Q S. A new difference method for regularized tong-wave equation [J]. Journal on Numerical Methods and Computer Applications, 2000(4): 247-254.
  • 6ZHANG F, VZQUEZ L. Two energy conserving numerical schemes for the Sine-Gordon equation [J]. Applied Mathematics and Computation, 1991, 45(1): 17-30.
  • 7WONG Y S, CHANG Q S, GONG L. An initial-boundary value problem of a nonlinear Klein-Gordon equation [J]. Applied Mathematics and Computation, 1997, 84(1): 77-93.
  • 8CHANG Q S, JIANG H. A conservative difference scheme for the Zakharov equation [J]. Journal of Computa- tional Physics, 1994, 113(2): 309-319.
  • 9ZHANG L M, CHANG Q S. A conservative numerical scheme for a class of nonlinear Schrbdinger equation with wave operator [J]. Applied Mathematics and Computation, 2003, 145(s2-3): 603-612.
  • 10WANG T C, ZHANG L M. Analysis of some new conservative schemes for nonlinear Schrbdinger equation with wave operator [J]. Applied Mathematics and Computation, 2006, 182: 1780-1794.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部