期刊文献+

一个新的三维二次混沌系统及其电路实现 被引量:61

A new three-dimensional quadratic chaotic system and its circuitry implementation
原文传递
导出
摘要 为了产生复杂的混沌吸引子,构造了一个新的三维二次自治混沌系统.该系统含有三个参数,每一个方程含有一个非线性乘积项.利用理论推导、数值仿真、Lyapunov指数谱和分岔图对系统的基本动力学特性进行了分析.结果表明,该系统具有五个平衡点,因而与Lorenz,Rsslor,Chen、L櫣等混沌系统是非拓扑等价的;当其参数满足一定条件时,系统是混沌的.与Lorenz等混沌系统相比,该系统具有更大的正Lyapunov指数,能够产生复杂的混沌吸引子和一些有趣的动力学行为.最后,设计了实现该系统的混沌电路,电路实验结果与动力学特性分析、数值仿真完全相符,从而验证了系统的混沌行为. In order to generate complex chaotic attractors, we construct a new three-dimensional quadratic autonomous chaotic system, in which each equation contains a single quadratic cross-product term and a system parameter. Basic dynamic properties of the new system are investigated via theoretical analysis and numerical simulation using the Lyapunov exponent spectrum and bifurcation diagram. Our results show that this system has five equilibria, therefore is not topologically equivalent to the Lorenz, Roesslor or the Chen and Lti systems, and the new system is chaotic when its parameters satisfy certain conditions. Compared with the systems mentioned above, the proposed system has larger positive Lyapunov exponent, displays a complex attractor and some other interesting properties. An electronic circuit was designed to realize the new chaotic system. Experimental chaotic behaviors of the system were found to be identical to the dynamic properties predicted by theoretical analysis and numerical simulations.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2006年第7期3295-3301,共7页 Acta Physica Sinica
基金 国家自然科学基金(批准号:60372004) 浙江省自然科学基金(批准号:Y105175) 杭州电子科技大学科研基金(批准号:KYS051505010)资助的课题.~~
关键词 三维二次自治系统 混沌 混沌吸引子 电路实现 three-dimensional quadratic autonomous system, chaos, chaotic attractor, circuitry implementation
  • 相关文献

参考文献2

二级参考文献21

  • 1[1]Kennedy M P 1993 IEEE.Trans.Circ Syst.40 657
  • 2[2]Cruz J M and Chua L O 1993 IEEE.Trans.Circ Syst.40 614
  • 3[3]Corron N J and Hahs D W 1997 IEEE. Trans.Circ Syst.44 373
  • 4[4]Chua L O et al 1986 IEEE.Trans.Circ Syst.38 10 73
  • 5[5]Morgul O 2000 IEEE.Trans.Circ Syst.47 1424
  • 6[6]Elwakil A S and Kennedy M P 2000 IEEE.Trans.Circ Syst.47 76
  • 7[9]Yang S P 2001 Acta Phys.Sin.50 619(in Chinese)[杨世平 2001 物理学报50 619]
  • 8[1]Matsumoto T, Chua L O, Komuro M 1985 IEEE Trans. CAS- Ⅰ 32 798
  • 9[2]Yin Y Z 1997 Int. J. Bifurc. Chaos 7 1401
  • 10[3]Matsumoto T, Chua L O, Kobayashi K 1986 IEEE Trans. CAS- Ⅰ 33 1143

共引文献56

同被引文献447

引证文献61

二级引证文献347

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部