期刊文献+

基于MCD的稳健主成分算法及其实证分析 被引量:19

A Robust Principal Component Analysis Based on MCD Estimator and Its Empirical Study
在线阅读 下载PDF
导出
摘要 主成分分析方法是在经济管理中经常使用的多元统计分析方法,在变量降维方面扮演着很重要的角色,是进行多变量综合评价的有力工具。但传统的主成分分析对于异常值十分敏感,计算结果很容易受到异常值影响,而实际数据常包含异常情况,通常分析很少考虑它们的作用。本文基于MCD估计提出一种稳健的主成分分析方法,模拟和实证分析结果表明,该方法对于抵抗异常值有很好的效果。 Principal component analysis(PCA)is a frequently used muhivariable analysis method in economics and management, it plays an important role in dimension reduction and is a powerful tool for overall evaluation. But traditional PCA is very sensitive to outliers and the results are easily affected by them. Real-life data always include abnormal situations which is usually lack of consideration. A robust PCA based on MCD estmator is put forward in this paper. Simulations and empirical study prove that it is very effective in resistance of outliers.
机构地区 暨南大学统计系
出处 《数理统计与管理》 CSSCI 北大核心 2006年第4期462-468,共7页 Journal of Applied Statistics and Management
基金 广东省科技计划攻关项目(编号:2004B10101010)
关键词 异常值 MCD估计 主成分分析 稳健主成分分析 outliers MCD estimator principal component analysis robust principal component analysis
  • 相关文献

参考文献5

  • 1Grübel,R.A Minimal Characterization of the Covariance Matrix[J].Metrika,1988,35,49-52
  • 2Mis Hubert,Peter J.Rousseeuw,Sabine Verboven.A Fast Method For Robust Principal Components With Applications To Chemonetrics[J].Chemometrics and Intelligent Laboratory System,2001,60,101-111
  • 3Peter J.Rousseeuw.Least Median of Squares Regression[J]Journal of the American Statistical Assocaition.1984,79,871-880
  • 4Peter J.Rousseeuw,Kstrien Van Driessen.A Fast Algorithm for the Monimum Covariance Determinant Estimator[J].Technimetrics,1999,41,212-223
  • 5Richard A.Johnson,Dean W.Wichern.Applied Multivariate Statistcal Analysis[M].Prentice Hall 1998

同被引文献137

引证文献19

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部