期刊文献+

基于加权支持向量机的焊缝RT图像中缺陷分类研究

Study to Classification of the Defect Presented on the RT Photo of the Welding Seam on Basis of the Weighted Support Vector Machine
原文传递
导出
摘要 分析了支持向量机的分类原理,指出在各类别样本数目相差较悬殊时,SVM不能获得良好的分类能力。针对焊接缺陷分类,提出了加权SVM(WSVM)算法。测试结果表明,该算法在焊缝RT图像中缺陷的分类识别中,能提高小类别缺陷的的检测精度,具有较高的理论和应用价值。 The paper analyses the classifying principle of the support vector machine(SVM),indicates that the SVM could not bear the excellent classifying capacity while the number of each kind of the sample differ greatly.According to the defect classification of the welding seam,the paper puts forward the weighted SVM algorithm.The testing result shows that the algorithm could increase the detection accuracy of the small kind defect on identifying the classification of the defect presented on the RT photo of the welding seam,which has higher theoretical and applicable value.
出处 《矿山机械》 北大核心 2006年第8期104-106,共3页 Mining & Processing Equipment
基金 江苏省博士后科研基金资助课题(2004035) 中国矿业大学科技基金资助课题(2005B005)。
关键词 缺陷定性 焊缝缺陷 焊缝图像 支持向量机 分类研究 模糊神经网络 RT 加权 无损检测 焊接结构 Weighted SVM Classification difference Classifying accuracy Defect of the welding seam RT
  • 相关文献

参考文献8

二级参考文献18

  • 1吴东流.计算机X射线实时成象的图象处理及应用[J].无损检测,1996,18(4):95-98. 被引量:1
  • 2.GB3323-87,1987.钢熔化焊对接接头射线照相和质量分级[S].,..
  • 3全国锅炉压力容器无损检测人员资格鉴定考核委员会编写.射线探伤[M].北京:劳动人事出版社,1988..
  • 4[1]Vapnik V. The nature of statistical learning theory[M]. New York : Springer-Verlag, 1995.
  • 5[2]Joachims T. Text categorization with support vector machines[R]. Technical Report, LS Ⅷ Number 23, University of Dortmund, German, 1997.
  • 6[3]Edgar Osuna, Robert Freund, Federico Girosi. Training support vector machines: An application to face detection[A]. In: IEEE Conference on Computer Vision and Pattern Recognition [C],Puerto Rico, 1997: 130~136.
  • 7[4]Schmidt M. Identifying speaker with support vector networks[A]. In: Interface'96 Proceedings [C], Sydney, Australia,1996.
  • 8[5]Cai Yu-Dong, Liu Xiao-Jun, Xu Xue-biao et al. Prediction of protein structural classes by support vector machines [J].Computers and Chemistry, 2002,26 (3): 293 ~ 296.
  • 9[6]Chew Hong-Gunn, Crisp D J, Bogner R E et al. Target detection in radar imagery using support vector machines with training size biasing [A]. In: Proceedings of the Sixth International Conference on Control, Automation, Robotics and Vision[C], Singapore, 2000.
  • 10[7]Chew Hong-Gunn, Bogner Robert E, Lim Cheng-Chew. Dual nu-support vector machine with error rate and training size biasing[A]. In:Proceedings of 26th IEEE ICASSP(International Conference on Acoustics, Speech, and Signal Processing) 2001[C], Salt Lake City, UT,USA, 2001: 1269~1272.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部