期刊文献+

基于GAs/PSO组合算法的水轮机调速系统PID参数寻优 被引量:2

PID Parameter Optimization of Hydraulic Turbine Speed Regulating System Based on GAs/PSO Combination Algorithm
在线阅读 下载PDF
导出
摘要 提出了一种基于GA s/PSO组合算法的P ID控制器参数自整定方法,这种方法兼有遗传算法(GA s)和粒子群算法(PSO)的优点。组合算法种群由GA s和PSO的最佳个体迁移形成,其中GA s采用了实数编码和变异概率自适应,PSO算法采用了带指数衰减的惯性因子的速度更新算法,以加快收敛速度。通过对水轮机调速系统P ID控制器参数寻优仿真比较表明,该组合算法寻优性能比单独的GA s和PSO表现更为优异,且所得系统具有更好的动态性能。 A PID controller parameter auto-tuning approach based on GAs/PSO combination algorithm is proposed, which has the advantages of genetic algorithm (GAs) and particle swarm optimization (PSO). The new population of combination algorithm is formed by immigration of best GA and PSO individuals, in which the real coding and adaptive mutation factor are employed in GA and the exponentially degeneration momentum factor is adopted in velocity updating of PSO, which can speed up the convergence of PSO. The simulation results in PID parameter optimization of hydraulic turbine speed regulating system show that the combination algorithm is superior to the single GAs or PSO one, the dynamic performance of closed loop system is satisfactory.
出处 《华东理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2006年第7期893-896,共4页 Journal of East China University of Science and Technology
基金 国家自然科学基金(60274020) 博士点基金(20050487013)
关键词 水轮机调速系统 PID参数 遗传算法 粒子群算法 组合算法 hydraulic turbine speed regulating system PID parameter GAs PSO combination algorithm
  • 相关文献

参考文献5

二级参考文献36

  • 1[1]Kennedy J, Eberhart RC,Shi Y.Swarm Intelligence[M].San Francisco:Morgan Kaufman Publishers,2001.
  • 2[2]Mataric M.Designing and Understanding Adaptive Group Behavior[J].Adaptive Behavior,1995,4:1-12.
  • 3[3]Dorigo M,V Maniezzo,A Colorni.The Ant System:Optimization by a Colony of Cooperating Agents[J].IEEE Transactions on Systems, Man and Cybernetics, 1996.
  • 4[4]Kennedy J,Eberhart R C.Particle Swarm Optimization[C].Proceedings of IEEE International Conference on Neutral Networks,Perth,Australia,1995.1942-1948.
  • 5[5]Kennedy J.The Particle Swarm:Social Adaptation of Knowledge[C].Proceedings of IEEE International Conference on Evolutionary Computation,Indianapolis,Indiana,1997.
  • 6[6]Eberhart R C,Kennedy J.A New Optimizer Using Particle Swarm Theory[C].Proceedings of Sixth International Symposium Micro Machine and Human Science,Nagoya,Japan,1995.
  • 7[7]Shi Y H,Eberhart R C.Parameter Selection in Particle Swarm Optimization[C].Annual,1998.
  • 8[8]Eberhart R C, Shi Y H.Comparison between Genetic Algorithms and Particle Swarm Optimization[R].Annual Conference on Evolutionary Programming, San Diego,1998.
  • 9[9]Shi Y H,Eberhart R C.A Modified Particle Swarm Optimizer[R].IEEE International Conference on Evolutionary Computation,Anchorage,Alaska,1998.
  • 10[10]Shi Y H,et al.Empirical Study of Particle Swarm Optimization[R].Proceedings of Congress on Evolutionary Computation,1999.

共引文献266

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部