期刊文献+

一种基于GPU的复杂目标电磁散射快速算法 被引量:2

Fast Algorithm for RCS of Complex Objects on GPU
在线阅读 下载PDF
导出
摘要 采用图形电磁计算方法计算复杂目标电磁散射特性时,因采用局部光照模型,在多次散射情况下有较大的误差。在研究光线跟踪算法原理和电磁散射物理光学理论的基础上,提出了复杂目标电磁散射计算的光线跟踪算法,并利用图形处理器(GPU)实现了该算法的硬件加速。计算结果表明,算法在提高计算精度的同时达到了与图形电磁计算方法相当的实时性,具有很好的工程应用价值。 Because of the local shading model, Graphical Electromagnetic Computing (GRECO) method has some errors under Multiscattering. A new algorithm for RCS of complex objects was proposed based on ray-tracing and Physical Optics (PO) theory, The algorithm is realized on GPU to use the ability of graphics hardware, According to computing results, the computing speed is as fast as GRECO's. The efficiency and accuracy of the algorithm have practical engineering value.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第8期2214-2218,共5页 Journal of System Simulation
基金 国防预研基金(413040402)
关键词 图形处理器(GPU) 图形电磁计算 雷达散射截面(RCS) 光线跟踪 graphics processing unit (GPU) graphical electromagnetic computing radar cross section (RCS) ray tracing
  • 相关文献

参考文献10

  • 1克拉特 E F.雷达散射截面-预估、测试和减缩[M].阮颖铮,等译.北京:电子工业出版社,1995.
  • 2Rius J M.Luis Jofre.High Frequency RCS of Complex Radar Targets in Real Time[C]//IEEE Trans Antennas Propagat.1993.41(9):1308-1319.
  • 3Purcell T J,Buck I,Mark W R,Hanrahan P.Ray Tracing on Programmable Graphics Hardware[C]//ACM Transactions on Graphics (S0730-0301),2002,21(3):703-712.
  • 4Appel A.On Calculating the Illusion of Reality[C]//IFIP Congress 68 Proc,1968,E79.
  • 5吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 6Fujimoto A,Tanaka T,Iwata K.Accelerated ray tracing system[C]// IEEE Computer Graphics and Applications (S0272-1716),1986,4:16-26.
  • 7李良超,吴振森,薛谦忠.一种计算复杂目标激光雷达散射截面的快速算法[J].西安电子科技大学学报,2000,27(5):577-580. 被引量:11
  • 8Badouel D.An efficient ray-polygon intersection.Graphics Gems[M].Glassner AS,ed.San Diego:Academic Press,1990,390-393.
  • 9Jonathan D.Cohen.Drawing Graphs to Convey Proximity:An Incremental Arrangement Method[C]//ACM Trans.Comput.-Hum.Interact (S1073-0516),1997,4(3):197-229.
  • 10杨正龙,金林,倪晋麟,方大纲.复杂目标双站RCS的图形电磁计算[J].电子学报,2004,32(6):1033-1035. 被引量:10

二级参考文献68

  • 1秦德华,王宝发.Bistatic RCS Prediction with Graphical Electromagnetic Computing (GRECO) Method for Moving Targets[J].Chinese Journal of Aeronautics,2002,15(3):161-165. 被引量:4
  • 2吴振森.任意形状粗糙物体的激光后向散射[J].电子科学学刊,1993,15(4):359-366. 被引量:17
  • 3Wu Zhensen,Int J Infrared Millimeter Waves,1992年,13卷,4期,537页
  • 4William B Gordon. Far-field approximation to the kirchhoff-helmholtz representations of scattered field[J]. IEEE Trans on Antennas and Propagat, 1975,23(5) :590- 592.
  • 5Juan M Rius, Miguel Ferrando, Luis Jofre. High-frequency RCS of complex radar targets in real-time[J]. IEEE Trans Antennas Propagat,1993,41(9): 1308-1318.
  • 6Liu Tiejun, Zhou Yong. Geometrical modeling and graphical RCS computing simulation for complex objects[J] .Journal of Electronics, 1997,6(4):35-39.
  • 7Andrew A Zaporozhets, Mireille F Levy. Current marching technique for electnomagnetic scattering computations[J]. IEEE Trans Antennas Propagat, 1999,47(6):1016-1024.
  • 8Andrew A Zaporozhets, Mireille F Levy. Bistatic rcscalculations with the vector parabolic equation method[J] .IEEE Trans Antennas Propagat, 1999,47(11):1688-1696.
  • 9EF克拉特 阮颖铮 译.雷达散射截面--预估、测量和缩减[M].北京:电子工业出版社,1987..
  • 10Clark James H.The geometry engine:A VLSI geometry system for graphics[A].In:Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Boston,1982.127~133

共引文献245

同被引文献14

  • 1余文华,杨小玲,刘永俊,苏涛,Raj Mittra.并行FDTD和IBM BlueGene/L巨型计算机结合求解电大尺寸的电磁问题[J].电波科学学报,2006,21(4):562-566. 被引量:6
  • 2杨正龙,金林,李蔚清.基于GPU的图形电磁计算加速算法[J].电子学报,2007,35(6):1056-1060. 被引量:14
  • 3OWENS J D, LUEBKE D, GOVINDARAJU N. A survey of general-purpose computation on graphics hardware[R]. Computer Graphics Forum, 2007, 26 (1):80-113.
  • 4KRAKIWSKY S E, TUMER L E, OKONIEWSKI M M. Acceleration of Finite-Difference Time-Domain (FDTD) Using Graphics Processor Units (GPU)[J]. IEEE MTTS Digest, 2004 : 1033-1036.
  • 5STEFANSKI,T P, DRYSDALE T D. Acceleration of the 3D ADI-FDTD method using graphics processor u-nits[J]. IEEE MTT-S International Microwave Sym- posium Digest (MTT), 2009:241.
  • 6PRICE D K, HUMPHREYJ R , KELMELIS EJ . GPU-Based accelerated 2D and 3D FDTD solvers[J]. Physics and Simulation of Optoelectronic Devices XV, San Jose, CA, 2007(1) :22-25.
  • 7NVIDIA Company. NVIDIA Fermi Compute Archi-tecture Whitepaper Version 1.1[S]. 2009.5.
  • 8PENG Shao-xin,NIE Zai-ping.Acceleration of the method of moments calculations by using graphics processing units. IEEE Trans-actions on Antennas and Propagation . 2008
  • 9Sean E Kraki wsky,Laurence E Turner,and Michal MOkoniewski.Acceleration of Finite-Difference Ti me-Domain(FDTD)Using Graphics Processor Units(GPU). IEEE MTT S International Microwave Symposium Digest . 2004
  • 10STEFANSKI,T P,DRYSDALE T D.Acceleration ofthe 3D ADI-FDTD method using graphics processor u-nits. IEEE MTT-S International Microwave Sym-posium Digest (MTT) . 2009

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部