期刊文献+

红外图像中的道路识别与表示 被引量:2

Road recognition and representation for infrared image
在线阅读 下载PDF
导出
摘要 对机器人视觉导航而言,道路识别和表示是一个非常重要的环节,它直接影响到后续的路径规划。该文针对红外道路图像,提出了基于区域方法的一套处理方案,该方法首先通过分割获得道路区域,利用链码跟踪获取道路边缘的链码。采用了一种通用的道路模型,然后基于链码以及该道路模型,设计了一种有效的道路边界拟合方法。在拟合过程中,首先依据一定的准则把链码分为两段,对于每一段再递归执行该分段过程,直到不能分为止,然后用分段直线去描述道路边界。该拟合算法可以有效地处理直道和非直道的情况。文中给出了相关的实验结果。 For robot vision navagation, the recognition and representation of road is a very important step, which influences the subsequent path planning directly. A set of effective processing methods are proposed for infrared road image, which is a region-based method instead of edge-based one. Segmentation is executed to obtain the road region and then road boundary is traced by chain code. One general road model is adopted, and based on the chain code and this road model, one fitting algorithm of road boundary is designed. Firstly, the fitting algorithm divides the chain code into two parts by certain criterion, such procedure is applied recursively to each part until it can't be divided further, then line segments are used to describe the road boundary. This fitting method can accomodate both straight line and non-straight line effectively. The related experimental results are presented too.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第15期2812-2815,2831,共5页 Computer Engineering and Design
关键词 红外图像 道路识别 道路模型 拟合 视觉导航 infrared image , road recognition road model fitting vision navigation
  • 相关文献

参考文献6

二级参考文献25

  • 1李刚.基于投影变换的立体视觉障碍物检测系统的研究与实现:硕士毕业论文[M].清华大学,2000..
  • 2陆建业.基于单目视觉的校园道路检测研究:毕业论文[M].清华大学,2000..
  • 3王文锐.公路几何线性检测技术[M].北京:人民交通出版社,2001..
  • 4章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 5朱志刚,清华大学学报,1997年,37卷,3期,12页
  • 6朱志刚,博士学位论文,1997年
  • 7Zheng J Y,Int J CV,1992年,9卷,1期,55页
  • 8朱志刚,Proc IAPR Workshop on Machine Vision Application,1990年,393页
  • 9范成法,中国图象图形学报,1998年,3卷,9期,746页
  • 10陆建业,2000年

共引文献89

同被引文献31

  • 1徐秀娜,赖汝.移动机器人路径规划技术的现状与发展[J].计算机仿真,2006,23(10):1-4. 被引量:35
  • 2邱雪娜,刘士荣,宋加涛,Simon X.YANG.不确定动态环境下移动机器人的完全遍历路径规划[J].机器人,2006,28(6):586-592. 被引量:27
  • 3牛新征,佘堃,路纲,周明天.蚁群算法研究的新进展和展望[J].计算机应用研究,2007,24(4):12-15. 被引量:7
  • 4Richards A,How J P.Robust variable horizon model predictive control for vehicle maneuvering[J].Int J Robust Nonlinear Control,2006,16(7):333-351.
  • 5Parasuraman R,Riley V.Humans and automation:use,misuse,disuse,abuse,human factors[J].Hum Factors,1997,39(2):230-253.
  • 6Mencar C,Fanelli A.Interpretability constraints for fuzzy information granulation[J].Inf Sci,2008,178(2):4585-4618.
  • 7Chraft R D,Brauning U,Orlowski T,et al.Automated cleaning of windows on standard facades[J].Automation in Construction,2000,516(9):489-501.
  • 8Zhou S M,Gan J Q.Low-level interpretability and highlevel interpretability:a unified view of data-driven interpretable fuzzy system modelling[J].Fuzzy Sets Syst,2008,159(23):3091-3131.
  • 9Mikut R,Jkel J,Grll L.Interpretability issues in data-based learning of fuzzy systems[J].Fuzzy Sets Syst,2005,150(2):179-197.
  • 10Mamdani E H.Application of fuzzy logic to approximate reasoning using linguistic synthesis[C]//Proceedings of the Sixth International Symposium on Multiple-Valued Logic,MVL76,1976:196-202.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部