期刊文献+

非对称坡面腔底无阀压电泵 被引量:33

Valve-less piezoelectric pump with unsymmetrical slope chamber bottom
在线阅读 下载PDF
导出
摘要 提出了一种新型的非对称坡面腔底无阀压电泵,这种泵巧妙地利用了泵腔内部的空间,将泵腔底部沿吸入口和排出口方向设计成非对称坡面形状,非对称坡面腔底与压电振子之间形成非对称交替排列的一组锥形流道。当泵工作时,使流体产生单向流动,从而可以不再需要传统的锥形流管;建立了这种泵关于平均值的流阻系数与泵流量关系的力学模型,并利用该模型分析了泵的工作原理;最后制作了非对称坡面腔底无阀压电泵,利用试验证明了上述理论的正确性。试验用泵采用的工作电压为220 V,工作频率为50 Hz,压电振子有效直径为30 mm,当非对称坡面的倾角差为70°,工作介质为水时,泵产生了4.67 mm水柱的压差。 A novel valve less piezoelectric pump with Unsymmetrical Slopes Chamber Bottom (USCB) was presented. It ingeniously takes advantage of the space of the pump chamber by developing its bottom into an unsymmetrical slopes shape along the direetion of the axis of the inlet and outlet, as a resuit, a series of diffuse channels and nozzle channels are alternatively formed between the USCB and the piezoelectric vibrator which is opposite to the USCB. It can force the fluid in the pump chamber to produce net flow when the pump works, and the regular diffuse/nozzle elements fitted outside the chamber can be eliminated. Mathematic model of this pump is established to present the relationship between the mean energy loss and the volume flow rate of the pump. Based on the mathematic model, the working theory of the pump is analyzed. Finally, a real USCB valve-less piezoelectric pump is manufactured, and the theory above-mentioned was verified by the pump in a test. Under conditions of the working voltage of 220 V,working frequency of 50 Hz and the diameter of the piezoelectric vibrator in 30 mm, the pressure difference produced between the inlet and outlet is 4.67 mm column when the pump works on water.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2006年第4期641-647,共7页 Optics and Precision Engineering
基金 国家自然科学基金资助(No.50575007) 北京市教育委员会科技发展计划资助项目(No.KM-200510005014)
关键词 无阀压电泵 流阻 非对称坡面腔底 valve-less piezoelectric pump flow resistance Unsymmetrical Slope Chamber Bottom(USCB)
  • 相关文献

参考文献19

  • 1ERIK S,G(O)RAN S.A valve-less diffuser/nozzle-based fluid pump[J].Sensors and Actuators A,1993,39 (12):159-176.
  • 2ERIK S,GORAN S.Displacement pumps of diaphragm type world intellectual property organization[J].Intellectual Application Number:PCT/SE94/001/00142.
  • 3程光明,曾平,杨国欣,杨志刚,铃木胜义,广濑精二.新结构压电泵实验研究[J].中国机械工程,1998,9(8):18-20. 被引量:13
  • 4阚君武,杨志刚,程光明.压电泵的现状与发展[J].光学精密工程,2002,10(6):619-625. 被引量:58
  • 5JIANG X N,ZHOU Z Y,HUANG X Y,et al.Micronozzle/diffuser flow and its application in micro valveless pumps[J].Sensors and Actuators A:Phsics,1998,70:81-87.
  • 6程光明,曾平,吴博达,杨志刚,周伟,铃木胜义,广濑精二.新结构压电泵锥形角度与泵性能关系分析[J].压电与声光,1999,21(2):104-107. 被引量:9
  • 7SINGHAL V,GARIMELLA S V,MURTHY J Y.Low Reynolds number flow through nozzle-diffuser elements in valveless micropumps[J].Sensors and Actuators A:Physics 2004,113 (2):226-235.
  • 8张建辉.一种往复式可连续改变锥角锥形流管无阀泵[P].中华人民共和国专利200410000669.7.
  • 9张建辉.一种新型压电泵[P].中华人民共和国专利,ZL98122356.7.
  • 10MATSUMOTO S,MAEDA R,KLEIN A.Characterization of a valve-less micropump based on liquid viscosity[J].Microscale Thermo Physical Engineer,1999,3 (1):31-40.

二级参考文献45

  • 1程光明,杨志刚,曾平.“双驱动足”回转式压电马达初步研究[J].压电与声光,1995,17(6):15-18. 被引量:7
  • 2程光明.驱动足驻波压电超声马达研究:博士论文[M].长春:吉林工业大学,1996..
  • 3小西克信 浮田浩行 等.以压电元件为动力源的油压驱动机构研究.日本机械学会论文集[M].,1997,63(1).158-165.
  • 4Woias P. Micropumps-summarizing the first two decades [J].SPIE, 2001,4560: 39-52.
  • 5Spencer W J, Corbett W T, Dominguez L R, et al. An electronically controlled piezoelectric insulin pump and valves [J]. IEEE Trans. Sonics Ultrasonbics, 1978, SU-25(3): 153-156.
  • 6van Lintel H T G, van de Pol F C M,Bouwstra S. A piezoelectric micropump based on micromachining of silicon [J]. Sensors and Actuators, 1988,15:153-167.
  • 7Linnemann R, Woias P, Senff C D, et al. A self-priming and bubble-tolerant piezoelectric silicon micropump for liquids and gases [A]. Proc. of the 11th IEEE MEMS 1998 Technical Digest[C]. Heidelberg, Germany, 25-29,1998: 532-537.
  • 8Mailefer D, van Lintel H, Mermet G R, et al. A High-performentce silicon micropump for an implantable drug delivery system [A]. Proc. of the 12th IEEE MEMS 1999 Technical Digest[C]. Orlando, Florida,USA, 1/17-21/99:541-546.
  • 9Shoji S, Nakagawa S, Esashi N. Micropump and sample-injector for integrated chemical analysis system [J]. Sensors and Actuators A, 1990,21-23:189-192.
  • 10Ederer I, Raetsch P, Schullerus W, et al. Piezoelectrically driven micropump for on-demand fuel-drop generation in an automobile heater with continuously adjustable power output [J]. Sensors and Actuators A, 1997, 62: 752-755.

共引文献114

同被引文献226

引证文献33

二级引证文献145

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部