期刊文献+

平方非线性振动方程的渐近解及其数值验证

ASYMPTOTIC SOLUTION OF A QUADRATIC NONLINEAR OSCILLATOR AND NUMERICAL VERIFICATION
在线阅读 下载PDF
导出
摘要 改进的Lindstedt-Poincar啨(L-P)法在传统的L-P法的基础上,对频率的展开式作了改进;卷积分法则提供了一个求近似解的迭代格式.本文首先用这两种方法求得平方非线性振动方程的二阶渐近解,并用Picard逐步逼近法证明由卷积分法得到的渐近解在有限的时间上是一致收敛的.其次,一种数值阶验证技术证实求得的二阶渐近解对小参数都是一致有效的.最后,对这两种渐近解进行误差的数值比较,结果表明它们对大参数无效,并简明分析其失效的原因.因此,这两种方法在平方非线性振动方程中的应用受到小参数的限制. The modified Lindstedt-Poincar6 method modifies the expansion of the fundamental frequency based on the classical L-P method, and the convolution integral method provides an iteration scheme to obtain the asymptotic solution. Firstly, we obtained the second order solutions of a quadratic nonlinear oscillator respectively by these two methods, and demonstrated that the solution obtained by convolution integral was uniformly convergent. Secondly, a technique of numerical order verification was applied to verify that the asymptotic solutions were uniformly valid for small parameter. Finally, numerical comparison of error shows that this two methods are invalid for large parameter. So, these two methods are limited by small parameter when they are applied to quadratic nonlinear oscillator.
作者 蔡萍 马米花
出处 《动力学与控制学报》 2006年第3期242-246,共5页 Journal of Dynamics and Control
关键词 非线性振动 改进的L-P法 卷积分法 数值验证 nonlinear oscillation, modified Lindstedt-Poincaré method, convolution integral method, numerical verification
  • 相关文献

参考文献8

  • 1[1]Mickens RE.Oscillations in planar dynamic systems.Singapore:World Scientific,1996
  • 2[2]Nayfeh AH,Mook DT.Nonlinear oscillations.New York:Wiley,1979
  • 3[3]Nayfeh AH.Introduction to perturbation techniques.New York:Wiley,1981
  • 4[4]Cheung YK,Chen SH,Lau SL.A modified Lindstedt-Poincaré method for certain strongly non-linear oscillators.International Journal of Non-Linear Mechanics,1991,26:367-378
  • 5[5]Hu H,Tang JH.A convolution integral method for certain strongly nonlinear oscillators.Journal of Sound and Vibration,2005,285:1235-1241
  • 6[6]Bosley DL.A technique for the numerical verification of asymptotic expansions.SIAM Review,1996,38 (1):128-135
  • 7[7]Cai JP.Numerical verification of the order of the asymptotic solutions of a nonlinear differential equation.Mathematical and Computational Applications,2006,11(1):85-90
  • 8[9]Hu H,Xiong ZG.Comparison of two Lindstedt-Poincaré-type perturbation methods.Journal of Sound and Vibration,2004,278:437-444

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部