摘要
对粒子群算法进行了详细描述和分析,并将其应用于新安江模型的参数优选中.对于人工生成的理想水文资料,采用粒子群算法优化新安江模型,可以使全部参数收敛到真值;对于实测的水文资料,通过与单纯形混合加速遗传算法(SAGA)和单纯多边形进化算法(SCE-UA)进行比较,可以看出,粒子群算法全局收敛性能较好,计算效率和精度较高,是一种有效的新安江模型参数优选方法.
Particle swarm optimization (PSO) is described and analyzed; and it is applied to calibrate Xin'anjiang model. For the ideal hydrological data generated by the hydrological model, the real value of all the parameters of Xin'anjiang model can be obtained by PSO. And for the practical data, we compare it with simplex hybrid accelerating genetic algorithm (SAGA) and shuffled complex evaluation algorithm (SCE-UA). The results show that PSO has global convergence, higher efficiency and precision. It is an effective global optimization to calibrate hydrologic model.
出处
《武汉大学学报(工学版)》
CAS
CSCD
北大核心
2006年第4期14-17,24,共5页
Engineering Journal of Wuhan University
基金
国家自然科学基金项目(50479039)资助
关键词
参数优选
新安江模型
全局优化
粒子群算法
calibration parameter
Xin'anjiang model
global optimization
particle swarm optimization