期刊文献+

饱和混凝土静动力抗压强度变化的细观力学机理 被引量:55

Micro-mechanism of static and dynamic strengths for saturated concrete
在线阅读 下载PDF
导出
摘要 已有的试验研究表明,不同加载速率下,饱和混凝土中的自由水对其力学性能有着不同的影响,与干燥混凝土相比,准静态荷载作用下饱和混凝土的抗压强度有所降低,动力荷载作用下饱和混凝土的抗压强度增高的较多。本文在翼型裂纹的基础上,考虑裂纹之间的相互作用、裂纹扩展速度对应力强度因子及孔隙水压力对裂纹扩展的影响,利用弹性断裂力学理论探讨了饱和混凝土的静、动力抗压强度变化机理并建立了理论模型。分析认为,慢速加载时,裂纹中的自由水可以达到缝尖,自由水的楔入作用加速了裂纹的扩展,降低了混凝土的强度;快速加载时,裂纹中的自由水较难达到缝尖,受负的孔隙水压力和自由水黏度及Stefan效应影响,饱和混凝土的动力抗压强度升高。模型计算与试验结果较为一致,表明本文理论模型可以较好地反映饱和混凝土静、动力抗压强度的变化机理。 The existing experimental data indicate that free water in saturated concrete has different effects on mechanical properties of concrete under different strain rates. Comparing with dry concrete, the static compressive strength of saturated concrete may decrease, but the dynamic compressive strength will increase remarkably. A model based on the elastic fracture mechanics is established to analyze the mechanism of these changes of concrete strength due to saturation. In the model, the interaction between micro cracks and different effects of pore water are taken into account. The analysis shows that when loading rate is slow the free water in crack may reach the tip and the wedge effect of water accelerates the expansion of the crack causing the reduction of concrete strength. Whereas, when loading rate is fast the free water in crack will not be able to reach the tip. Due to the combined positive of pore water pressure, viscous of water and Stefan Effect the dynamic compressive strength of concrete will be enhanced. The calculation result is in good agreement with the experimental data.
出处 《水利学报》 EI CSCD 北大核心 2006年第8期958-962,968,共6页 Journal of Hydraulic Engineering
基金 国家自然科学基金资助项目(5022592790210010)
关键词 饱和混凝土 抗压强度 断裂力学 翼型裂纹 孔隙水 saturated concrete compressive strength fracture mechanics wing type crack pore water
  • 相关文献

参考文献12

  • 1Mehta P K, Nonteiro P J M. Concrete: Microstructure, Properties and Materials [M]. Indian Concrete Institute, 1997.
  • 2Yaman I O, Heam N, Aktan H M. Active and non-active porosity in concrete part I: Experimental evidence [J].Material and Structure, 2002, 35(3) : 102 - 109.
  • 3李庆斌,张楚汉,王光纶.单轴状态下混凝土的动力损伤本构模型[J].水利学报,1994,26(12):55-60. 被引量:33
  • 4林皋,陈健云,肖诗云.混凝土的动力特性与拱坝的非线性地震响应[J].水利学报,2003,34(6):30-36. 被引量:14
  • 5Ross C A, Jerome D M, Tedesco J W, et al. Moisture and strain rate effects on concrete strength[J]. ACI Material Journal, 1996, 93(3) :293 - 300.
  • 6朱元海,匡洞庭,王签.大学物理[M].北京:人民教育出版社,1998.
  • 7Li S, Lajtai E Z. Modeling the stress-strain diagram for brittle rock loaded in compression [J]. Mechanics of Materials,1998, 30: 243-251.
  • 8Li H B, Zhao J, Li T J. Micromechanical modeling of the mechanical properties of a granite under dynamic uniaxial compressive loads [J] . International Journal of Rock Mechanics and Mining Sciences, 2000, 37:923 -935.
  • 9Murakami Y, Aoki S. Stress Intensity Factors Handbook[M]. Oxford, Pergamon, 1990.
  • 10Zheng Dan, Li Qingbin. An explanation for rate effect of concrete strength based on fracture toughness including free water viscosity [J]. Engineering Fracture Mechanics, 2004, 71: 2319- 2327.

二级参考文献15

  • 1肖诗云 林皋 王哲.Willian-Warnke三参数率相关动态本构模型(待刊出)[J]..
  • 2陈健云 林皋.考虑速率型混凝土弹塑性损伤模型的高拱坝地震响应分析[J].土木工程学报(待刊出),.
  • 3Valliappan S, Yazdchi M, Khalili N. Seismic analysis of arch dams-a continuum damage mechanics approach [ J ].International Journal for Numerical Methods in Engineering, 1999, 45: 1695 - 1724.
  • 4Hatano T. Relations between strength of failure, strain ability, elastic modeulus and failure time of concrets [ R].Technical Report C - 6001, Technical Laboratory of the Central Research Institute of Electric Power Indusry, Nov.1960.
  • 5Raphael J M. Tensile Strength of Concrete [J]. ACI Journal, 1984, 81 : 158 - 165.
  • 6Kollgaard E B. Criteria for Seismic Safety-Approaches for Evaluation of Analytical Results [ A], Proceedings of China-US Workshop on Earthquake Behaviour of Arch Dams [C]. Beijing, China, 1987:329 - 348.
  • 7Japan National Committee on Large Dams. Earthquake Resistant Design Features of Dams in Japan [ R]. in Earthquake Resistant Design for Civil Engineering Structures in Japan, 1996, 1 - 30.
  • 8Harris D W, Mohorovic C E, Dolen T P. Dynamic Properties of Mass Concrete Obtained from Dam Cores [J]. ACI Materials Journal, 2000, 97: 290- 296.
  • 9Bischoff P H, Perry S H. Compressive Behaviour of Concrete at High Strain Rates [J]. Materials and Structures,1991, 24: 425-450.
  • 10Malvar L J, Ross C A. Review of Strain Rate Effects for Conetete in Tension [J]. ACI Materials Journal, 1998, 95 :735 - 739.

共引文献42

同被引文献804

引证文献55

二级引证文献425

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部