期刊文献+

水平式金属管浮子流量计的仿真与实验

Simulation and Experiment on Horizontal Metal Tube Rotameter
在线阅读 下载PDF
导出
摘要 利用基于计算流体力学的流量传感器设计方法实现了对适合安装于水平管道的特殊结构的金属管浮子流量计三维湍流流场的数值仿真研究.流场仿真所需的模型采用GAMBIT软件建立,通过FLUNT软件进行仿真,仿真过程中利用受力平衡来控制计算精度.数值仿真结果和物理实验结果比较,浮子受力平衡误差绝对值为2.01%时,流量误差绝对值为0.70%,证实了仿真结果的准确性.同时,利用流场仿真信息对流量传感器结构做了进一步的优化,解决了水平式金属管浮子流量计在大流量下的浮子振动问题. Numerical simulation study of the 3D turbulence flow field of metal tube rotameter with special structure fixed on the level piping is carried out by the design method for flow sensor based on the computational fluid dynamics. The model of simulation is established by GAMBIT software, the flow field is simulated with FLUNT software, and the computational precision is controlled through force balance in the process of simulation. Comparison of results between simulation and experiment shows that, when the error absolute value of floater' force balance is 2.01%, the error absolute value of flow rate is 0. 70%, which verifies the accuracy of simulation results. Furthermore, the simulating flow field of metal tube rotameter is used to optimize the flow sensor structure, and the problem of horizontal metal tube rotameter that the floater vibrates in high speed is solved.
作者 叶佳敏 张涛
出处 《天津大学学报》 EI CAS CSCD 北大核心 2006年第9期1099-1104,共6页 Journal of Tianjin University(Science and Technology)
基金 天津市自然科学基金(023603511).
关键词 金属管浮子流量计 水平式安装 数值仿真 流量传感器设计方法 结构优化 metal tube rotameter horizontal fixing numerical simulation design method for flow sensor structural optimization
  • 相关文献

参考文献9

  • 1文端中,钟德珍,蔡竹梯.流量测量用非均匀分布多孔式整流器的研究[J].核动力工程,1989,10(3):59-64. 被引量:6
  • 2Morrision G L, Hall K R, Hoste J C. Flow development downstream of a standard tube bundle and three different porous plate flow conditioner [ J ]. Flow Measurement and Instrumentation, 1997,8 ( 2 ) : 61 -76.
  • 3徐英.新犁智能金属管浮子流量计的研究[D].天津:天津大学电气与自动化工程学院,2003.
  • 4Miller R W. Flow Measurement Engineering Handbook [M].New York : McGraw-Hill, 1983.
  • 5Shih Tsan-Hsing. Some developments in computational modeling of turbulent flows [ J ]. Fluid Dynamics Research.1997,20 ( 1/2/3/4/5/6 ) : 67-96.
  • 6Lakshimiarayana B. Turbulence modeling for complex flows[ J ]. AIAA Journal, 1986,24( 12 ) : 1900-1917.
  • 7Laws E M. Flow conditioning a new development [J ]. Flow Measurement and Instrumentation, 1990,1 ( 3 ) : 165- 170.
  • 8Patel V C, Rodi W, Scheuerer G. Turbulence models for near-wall and low Reynolds number flows: A review [J ]. AITT Journal, 1984,23 : 1308-1319.
  • 9陈庆光,徐忠,张永建.RNG κ-ε模式在工程湍流数值计算中的应用[J].力学季刊,2003,24(1):88-95. 被引量:56

二级参考文献24

  • 1王少平,曾扬兵,沈孟育,史峰,徐忠.一个新的考虑流线曲率修正的两方程湍流模式[J].科学通报,1995,40(7):594-596. 被引量:6
  • 2吴烽,王晓宏.湍流的重正化群理论[J].力学进展,1995,25(3):329-342. 被引量:4
  • 3王少平,曾扬兵,沈孟育,中峰,徐忠.用RNGK─ε模式数值模拟180°弯道内的湍流分离流动[J].力学学报,1996,28(3):257-263. 被引量:40
  • 4Yakhot V, Orszag S A. Renormalised group analysis of turbulence: I. basic theory. J Sci Comput, 1986,1:3-5.
  • 5Yakhot V, Smith L M. The renormalization group, the ε expansion and derivation of turbulence models. J Sci Comput, 1992,7:35-68.
  • 6Rubinstein R, Barton J M. Nonlinear Renolds stress models and renormalization group. Phys Fluids A, 1990,2(8):1472-1476.
  • 7Smith L M, Reynolds W C. On the Yakhot-Orszag renormalization group method for deriving turbulence statistics and models. Phys Fluids A, 1992,4(2):364-390.
  • 8Yakhot V, et al. Development of turbulence model for shear flows by a double expansion technique. Phys Fluids A, 1992,4(7):1510-1520.
  • 9Spezisle C G, Gatski T B, Fitzmaurice N. An analysis of RNG based turbulence models for homogeneous shear flow. Phys Fluids A, 1991,3:2278-2281.
  • 10Speziale C G, Thangam S. Analysis of an RNG based turbulence model for separated flows. Int J Engng Sci, 1992,30(10):1379-1388.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部