期刊文献+

基于粗糙集和贝叶斯分类器的变电站故障诊断 被引量:4

Research on fault diagnosis method of substation based on rough set and bayes classifier
在线阅读 下载PDF
导出
摘要 以变电站的开关继电保护信息为基础,提出了一种基于粗糙集理论和贝叶斯分类器的变电站故障诊断方法。首先利用粗糙集理论的知识约简和处理不确定信息的能力,对变电站的故障诊断知识进行挖掘,实行属性优选,再运用朴素贝叶斯分类器对故障诊断知识进行模式识别。将其应用于变电站故障诊断专家系统中,应用结果显示了该方法能有效地缩小问题求解规模和较强的抗干扰能力,是一种有效的变电站故障诊断方法。 On the basis of switch and relay protecting information of substation, an approach to substation fault diagnosis is proposed based on rough sets theory and bayesian classifier. Namely, rough set is applied to mine fault diagnosis ,knowledge of substation and implement predominant attributes selection based on its abilities of knowledge reduction and disposing indeterminate information, then fault is identified though bayesian classifier. Eventually, being used in fault diagnosis expert systems of substation, the application results show the approach minimizes the problem solving scale and owns excellent anti-inference capabilities, and is an effective method for fault diagnosis of substation.
出处 《计算机工程与设计》 CSCD 北大核心 2006年第16期3099-3101,共3页 Computer Engineering and Design
关键词 变电站 粗糙集 贝叶斯分类器 故障诊断 预测 substation rough set bayesian classifier fault diagnosis prediction
  • 相关文献

参考文献8

  • 1毕天姝,倪以信,吴复立,杨奇逊.基于新型神经网络的电网故障诊断方法[J].中国电机工程学报,2002,22(2):73-78. 被引量:130
  • 2Lee Heung-Jae,Ahn Bok-Skin,Park-Yong Moon.A fault diagnosis expert system for distribution substations[J].IEEE Trans on power Delivery,2000,15 (1):92-97.
  • 3Zhang Qi,Han Zhenxiang,Wen Fuchuan.A new approach for fault diagnosis in power systems based on rough set theory[C].Hong Kong:4th International Conference on Advances in Power System Control,Operation and Management,IEEE,1997.596-602.
  • 4Chen Wen-Hui,Liu Chih-Wen,Men-Shen Tsai.On-line fault diagnosis of distribution substations using hybrid cause-effect network and fuzzy rule-based method[J].IEEE Transactions on Power Delivery,2000,15(2):710-717.
  • 5Alves da Silva A P,Insfran A H F,da Sillvera P M,et al.Neural networks for fault location in substations[J].IEEE Transactions on power Delivery,1996,11 (1):234-239.
  • 6Pawlak Z.Rough sets[J]Jnternational Journal of Information and Computer Science,1982,11(5):341-356.
  • 7蒋世忠,杨天奇.基于拓展粗糙集的不完备表的规则挖掘及应用[J].计算机工程与设计,2005,26(7):1767-1769. 被引量:3
  • 8余长慧,孟令奎,潘和平.基于贝叶斯网络的不确定性知识处理研究[J].计算机工程与设计,2004,25(1):1-3. 被引量:22

二级参考文献24

  • 1余长慧 潘和平.贝叶斯网络结构学习:用于数据挖掘和知识发现[J].武汉大学学报:信息科学版,2002,:38-40.
  • 2[1]Fukui C,Kawakami J.An expert system for fault section estimation using information from protective relays and circuit breakers[J].IEEE Transaction on Power Delivery,1986,1(4):83-90.
  • 3[2]Yang C L,Okamoto H,Yokoyama A,Sekine Y.Expert system for fault section estimation of power system using time sequence information[J].Electrical Power & Energy Systems,1992,14:225-232.
  • 4[3]Ernesto Vazquez M, Oscar L,Chacon M,et al..An on line expert system for fault section diagnosis in power system[J].IEEE Transactions on Power Systems,1997,12(1):357-362.
  • 5[4]Xu K L,Zhou M,Ren J W.An objectoriented power system fault diagnosis expert system[C].International Conference on Electrical Engineering (ICEE'99), Hong Kong:1999.223-226.
  • 6[5]Oyama T.Fault section estimation in power system using Boltzmann machine[C].Proceedings of the Second International Forum on Application of Neural Networks to Power Systems (ANNPS'93),1993,3-8.
  • 7[6]Wen F.S. and Han Z.X., Fault section estimation in power systems using a genetic algorithm[J].Electric Power Systems Research,1995,34(3):165-172.
  • 8[7]Wen F S,Han Z X.A refined genetic algorithm for fault section estimation in power systems using the time sequence information of circuit breakers[J].Electric Machines and Power Systems,1996,24(8):801-815.
  • 9[8]Lai L L,Sichanie A G,Gwyn B J.Comparison between evolutionary programming and a genetic algorithm for fault-section estimation[J].IEE Proceedings: Generation, Transmission and Distribution,1998,145(5):616-620.
  • 10[9]Chang C S,Tian L,Wen F S.A new approach to fault section estimation in power systems using ant system[J].Electric Power System Research,1999,41:63-70.

共引文献152

同被引文献34

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部