期刊文献+

d+1维Kardar-Parisi-Zhang方程动力学标度奇异性的直接标度分析 被引量:1

Scaling Analysis of the d+1 Kardar-Parisi-Zhang Equation for Anomalous Dynamic Scaling
在线阅读 下载PDF
导出
摘要 采用Hentschel-Family直接标度分析方法,分析了d+1维Kardar-Parisi-Zhang(KPZ)方程的动力学标度奇异性质.通过对局域倾斜度涨落的时间标度行为的研究,得到了奇异标度指数κ的表达式.结果表明:无论是在强耦合区域还是在弱耦合区域,d+1维KPZ方程均遵从自仿射的Family-Vicsek正常标度的性质. The anomalous dynamic scaling of d + 1 Kardar-Parisi-Zhang(KPZ) equation was studied based on the scaling method introduced by Hentschel and Family. The anomalous scaling exponent k was obtained by studying the time scaling behavior of the fluctuations of the local derivative. The results show that the d + 1 KPZ equation, both in the weak-coupling and strong-coupling region, exhibits a standard self-affine Family-Vicsek scaling.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2006年第5期695-698,共4页 Journal of China University of Mining & Technology
关键词 表面粗化生长 动力学标度 直接标度分析 KPZ方程 surface rough growth dynamic scaling scaling analysis the Kardar-Parisi-Zhang equation
  • 相关文献

参考文献18

  • 1HALPIN-HEALY T,ZHANG Y C.Kinetic roughening phenomena,stochastic growth,directed polymers and all that[J].Physics Reports,1995,254:215-414.
  • 2KRUG J.Origins of scale invariance in growth process[J].Advances in Physics,1997,46(2):139-282.
  • 3MEAKIN P.Fractal,Scaling and growth far from equilibrium[M].Cambridge:Cambridge University Press,1998.
  • 4FAMILY F,VICSEK T.Scaling of the active zone in the Eden process on percolation networks and the ballistic deposition model[J].Journal of Physics A,1985,18:75-75.
  • 5KRUG J.Turbulent interfaces[J].Physical Review Letters,1994,72 (18):2907-2910.
  • 6LOPEZ J M,RODRIGUEZ M A.Lack of self-affinity and anomalous roughening in growth processes[J].Physical Review E,1996,54(3):2189-2192.
  • 7DAS SARMA S,LANCZYCKI C J,KOTLYAR R,et al.Scale invariance and dynamical correlations in growth models of molecular beam epitaxy[J].Physical Review E,1996,53 (1):359-388.
  • 8LOPEZ J M,RODRIGUEZ M A,CUERNO R.Super roughening versus intrinsic anomalous scaling of surfaces[J].Physical Review E,1997,56 (4):3993-3998.
  • 9LOPEZ J M,RODRIGUEZ M A,CUERNO R.Power spectrum scaling in anomalous kinetic roughening of surfaces[J].Physica A (Amsterdam),1997,246:329-347.
  • 10LOPEZ J M.Scaling approach to calculate critical exponents in anomalous surface roughening[J].Physical Review Letters,1999,83 (22):4594-4597.

同被引文献24

  • 1LOPEZ J M, RODRIGUEZ M A. Lack of self-affinity and anomalous roughening in growth processes[J].Physical Review E, 1996, 54 (3): 2189-2192.
  • 2LOPEZ J M, RODRIGUEZ M A, CUERNO R. Super roughening versus intrinsic anomalous scaling of surfaces [J]. Physical Review E, 1997, 56 (4): 3993-3998.
  • 3LOPEZ J M, RODRIGUEZ M A, CUERNO R.Power spectrum scaling in anomalous kinetic roughening of surfaces [J]. Physica A, 1997(246):329- 347.
  • 4RAMASCO J J, LOPEZ J M, RODRIGUEZ M A. Generic dynamic scaling in kinetic roughening [J]. Physical Review Letters, 2000, 84(10) :2199-2202.
  • 5TAO S, HONG G, MARTIN G. Dynamics of driven interfaces with a conservation law [J]. Physical Review A, 1989,40(11) : 6763-6766.
  • 6TANG G, MA B K. Scaling approach to the nonlocal surface growth equations [J]. Physica A, 2001 (298):257-265.
  • 7MEDINA E, HWA T, KARDAR M, et al. Burgers equation with correlated noise: Renormalization-group analysis and application to directed polymers and interface growth [J]. Physical Review A, 1989,39 (6) :3053-3075.
  • 8KRUG J. Origins of scale invariance in growth process [J]. Advance in Physics, 1997, 46 (2):139- 282.
  • 9MEAKIN P. Fractal, Scaling and growth far from equilibrium [M]. Cambridge: Cambridge University Press, 1998.
  • 10BARABASI A L, STANLEY H E. Fractal concepts in surface growth [M]. Cambridge: Cambridge University Press, 1995.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部