期刊文献+

室内移动机器人的视觉定位方法研究 被引量:13

Vision-Based Localization of Indoor Mobile Robot
在线阅读 下载PDF
导出
摘要 针对地图未知的室内环境下的定位问题,提出了一种基于特征跟踪的视觉里程计方法.利用单目摄像头提取和跟踪环境特征点集,进而根据观测模型利用扩展卡尔曼滤波算法估算出机器人的位姿.办公室环境中的定位实验证明了方法的有效性. This paper proposes a vision-odometer method based on feature tracking to solve the localization problem in indoor environments without a priori map. It extracts and tracks feature point sets in the environment with single camera, and then calculates position and pose of the robot with measurement model and extended Kalman filtering. Experiments in office environment show that the method is effective and efficient.
出处 《机器人》 EI CSCD 北大核心 2006年第5期504-509,共6页 Robot
基金 国家863计划资助项目(2005AA420010) 国家自然科学基金资助项目
关键词 移动机器人 定位 视觉 扩展卡尔曼滤波 mobile robot localization vision extended Kalman filtering
  • 相关文献

参考文献12

  • 1Jirawimut R, Prakoonwit S, Cecelja F, et al. Visual odometer for pedestrian navigation [ J ]. IEEE Transactions on Instrumentation and Measurement, 2004, 52 (4) : 1166 - 1173.
  • 2王景川,陈卫东,曹其新.基于全景视觉与里程计的移动机器人自定位方法研究[J].机器人,2005,27(1):41-45. 被引量:23
  • 3Dellaertt F, Thrun S, Thorpe C. Mosaicing a Large Number of Widely Dispersed, Noisy, and Distorted Images: a Bayesian Approach[R]. USA : Carnegie Mellon University, 1999.
  • 4迟健男,徐心和.移动机器人即时定位与地图创建问题研究[J].机器人,2004,26(1):92-96. 被引量:53
  • 5Moravec H P. Towards automatic visual obstacle avoidance[ A].Proceedings of the 5th International Joint Conference on Artificial Intelligence[C]. USA: 1977. 584.
  • 6Zuniga O, Haralick R M. Corner detection using the facet model[A]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition [C]. Piscataway, USA: IEEE, 1983. 30 -37.
  • 7Rangarajan K, Shah M, van Brackle D. Optimal comer detector[J]. Computer Vision, Graphics, and Image Processing, 1989,48 ( 2 ) : 230 - 245.
  • 8陈鹰.遥感影像的数字测量[M].上海:同济大学出版社,2003.134-141.
  • 9Hu M K. Visual pattern recognition by moment invariants[ J]. IRE Transactions on Information Theory, 1962, 8 : 179 - 187.
  • 10Welch G, Bishop G. An Introduction to the Kalman Filter[ R].USA: University of North Carolina, 2003.

二级参考文献33

  • 1[1]Jensfelt P, Cgrustebseb H. Laser based position acpuisition and tracking in an indoor environment[A]. Proceedings of IEEE International Symposium on Robotics and Automation[C]. Mexico: 1998,l. 331-338.
  • 2[2]Davison A J, Nobuyuki K. 3D simultaneous localization and map building using active vision for a robot moving on undulating terrain[A]. Proceedings of the IEEE International Conference on Computer Vision and Recognization[C]. Hawail: 2001,1. 384-391 .
  • 3[3]Se S, Lowe D, Little J. Vision-based mobile robot localization and mapping using scale-invariant features[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Korea: 2001. 2051-2058.
  • 4[4]Leonard J, Durrant-Whyte H F. Dynamic map building for an autonomous mobile robot[J]. International Journal of Robotics Research, 1992, 11(4): 286-298.
  • 5[5]Moutarlier P, Chatila R. Stochastic multisensory data fusion for mobile robot localization and environmental modeling[A]. Proceedings of the International Symposium on Robotics Research[C]. 1990. 85-94.
  • 6[6]Montemerlo M, Thrun S. FastSLAM: a factored solution to the simultaneous localization and mapping problem[A]. Proceedings of the Eighteenth National Conference on Artificial Intelligence[C]. Edmonton: AAAI Press, 2002. 593-598.
  • 7[7]Hu S, Hu D D, Gu O. Landmark-based navigation of mobile robots in manufacturing[A]. IEEE International Conference on Emerging Technologies & Factory Automatin[C]. Spain: 1999. 18-21.
  • 8[8]Leonard J, Durrant-White H F. Directed Sonar Sensing for Mobile Robot Navigation[M]. Boston: Kluwer Academic Publishers, 1992. 208-216.
  • 9[9]Thrun S. Particle filters in robotics[A]. Proceedings of Uncertainty in AI (UAI- 2002)[C]. San Francisco: Morgan Kaufmann Publishers, 2002.511-518.
  • 10[10]Feder H J S. Simultantous stochastic mapping and localization[D]. USA: MIT, 2001.

共引文献86

同被引文献94

引证文献13

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部