期刊文献+

一种基于密度单元的自扩展聚类算法 被引量:7

An Self-expanded Clustering Algorithm Based on Density Units
在线阅读 下载PDF
导出
摘要 提出一种高效的基于密度单元的自扩展聚类算法SECDU.首先将数据空间等分为若干个密度单元,再根据数据点的位置将其划分到所属的密度单元中,然后针对密度单元进行聚类.聚类首先产生在数据最密集的区域,然后向周围低密度区域延伸.聚类在延伸的过程中体积逐渐增大,密度逐渐减小,直到聚类的密度达到一个事先规定的限度时为止.算法在保留原有数据分布特性的前提下利用密度单元对数据进行压缩,并在保证具有较好效果的前提下大幅度地提高了聚类的速度. An efficient self-expanded clustering algorithm based on density units (SECDU) is presented. The whole data space is divided into several density units equally. Each data point is put into a density unit according to the data point possition. The area with the highest data density is the starting point of clustering and it is expanded to the low-density area. The whole process will not stop until densities of all clusters reduce to the threshold set in advance. By compressing data into data units, SECDU can cluster large dataset at a high speed without destroying distribution feature.
出处 《控制与决策》 EI CSCD 北大核心 2006年第9期974-978,共5页 Control and Decision
基金 国家自然科学基金项目(60273079 60573089)
关键词 聚类分析 密度单元 聚类空间 聚类算法 Clustering analysis Density unit Cluster space Cluster algorithm
  • 相关文献

参考文献9

  • 1Macqueen J.K-means:Some Methods for Classification and Analysis of Multivariate Observations[A].The 5th Berkeley Symp on Mathematical Statistics and Probability[C].Berkeley,1976:56-68.
  • 2Markus M,Breunig,Hans-Peter Kriegel,et al.Data Bubbles:Quality Preserving Performance Boosting for Hierarchical Clustering[A].ACM SIGMOD[C].Santa Barbara,2001:99-112.
  • 3Samer Nassar,Jorg Sander,Corrine Cheng.Incremental and Effective Data Summarization for Dynamic Hierarchical Clustering[A].ACM SIGMOD[C].Paris,2004:13-18.
  • 4Guha S,Rastogi R,Shim K.CURE:An Efficient Clustering Algorithm for Large Databases[A].ACM Special Interest Group on Management of Data[C].Washington,1998:73-84.
  • 5Zhang T,Ramakrishnan R,Livny M.BIRCH:An Efficient Data Clustering Method for Very Large Databases[A].ACM SIGMOD Int Conf on Management of Data[C].Montreal,1996:103-114.
  • 6Ankerst M,Breunig M,Kriegel H,et al.OPTICS:Ordering Points to Identify the Clustering Structure[A].ACM Special Interest Group on Management of Data[C].Philadelphia,1999:49-60.
  • 7Sander J.Density-based Clustering in Spatial Databases:The Algorithm GDBSCAN and It Applications[J].Data Mining and Konwledge Discovery,1998,2(2):169-194.
  • 8Ester M,Kriegel H,Sander J.A Density-based Lgorithm for Discovering Clusters in Large Spatial Databases with Noise[A].Knowledge Discovery and Data Mining[C].Portland,1996:226-231.
  • 9王明善,沈恒慈.概率论与数理统计[M].北京:高等教育出版社,1999.

同被引文献72

引证文献7

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部