期刊文献+

基于Contourlet变换的自适应图像去噪方法 被引量:18

Adaptive Image Denoising Algorithm Based on Contourlet Transform
在线阅读 下载PDF
导出
摘要 综合考虑Contourlet变换后系数尺度内和尺度间的依赖性,提出了一种基于Contourlet变换的自适应去噪方法。与几种传统的小波去噪算法比较,它能够更有效地保留图像的细节和纹理,具有更好的视觉效果和较优的SNR值。 Contourlet transform is a "true" two-dimensional image sparse representation. It is multiresolutional, localized , multidirectional and anisotropic, so it is more effectively capture high dimensional singularity. Because of all these characteristics, and considering of the intrasubband and interscale dependencies, an adaptive denoising algorithm was proposed based on the Contourlet transform. The experimental results indicate that it is better than several traditional wavelet shrinking denoising algorithm in smoothing noise and preserving texture and details, and improving the SNR.
出处 《红外技术》 CSCD 北大核心 2006年第9期552-556,共5页 Infrared Technology
基金 武器装备预研基金项目(编号:51483020105ZS9309)
关键词 奇异性 图像去噪 CONTOURLET变换 多方向 多尺度几何分析 singularity image denoising Contourlet transform multidirection multiscale geometric analysis
  • 相关文献

参考文献13

  • 1Donoho D L. De-noising by soft-thresholding[J]. IEEE Trans.on Information Theory. 1995, 41: 613-627.
  • 2Yuan X H, Buckles B P. Subband noise estimation for adaptive wavelet shrinkage[A]. ICPR 2004. Proceedings of the 17th International Conference on Pattern Recognition[C]. 2004, 4: 858-888.
  • 3Weyrich N, Warhola G T. Wavelet shrinkage and generalized cross validation for image denoising[J]. IEEE Trans. Image Proc. 1998, 7(1):82-90.
  • 4Chang S G, Yu B, Vetterli M. Adaptive wavelet threshoding for image denoising and compression[J]. IEEE Trans. Image Proc. 2000, 9(9):1532 - 1546.
  • 5查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 6谭毅华,田金文,柳健.基于小波局部统计特性的图像去噪方法[J].信号处理,2005,21(3):296-299. 被引量:8
  • 7蒋定定,孙所义,李开端.基于小波变换的红外图像边缘提取研究[J].红外技术,2003,25(6):31-33. 被引量:4
  • 8冯鹏,米德伶,潘英俊,魏彪,金炜.改进的Curvelet变换图像降噪方法[J].光电工程,2005,32(9):67-70. 被引量:14
  • 9Do M N, Vetterli M. Contourlets. A directional multiresolution image representation [A]. Proc of IEEE International Conference. on Image Processing[C]. Rochester, NY: 2002. 357-360.
  • 10Do M N, Vetterli M. The Contourlet Transform: An Efficient Directional Multiresolution Image Representation[J] . IEEE Trans. Image Processing.2005: 1-16.

二级参考文献21

  • 1Mallat S, Zhang S. Characterization of signals from multiscale edge[J]. IEEE Trans PAMI, 1992.14(7) : 710-732.
  • 2Donoho D L. De-noising by soft-thresholding[J]. IEEE Transactions on Information Theory, 1995,41:613 ~ 627.
  • 3Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage[ J]. Biometrika, 1994,81: 425 ~ 455.
  • 4Chang S G, Yu B, Martin V. Adaptive wavelet thresholding for image denoising and compression [ J ]. IEEE Transactions on Image Processing, 2000,9 ( 9 ): 1532 ~ 1546.
  • 5Stein C M. Estimation of the mean of a multivariate normal distribution[ J]. Annual Statistical, 1981,9(6): 1135 ~ 1151.
  • 6Yang Dali, Xu Mingxing, Wu Wenhu, et al. A noise cancerlation method based on wavelet transform [ A ]. In: International Symposium on Chinese Spoken Language rocessing [ C ], Beijing, 2000: 211 ~214.
  • 7Emmanuel J. CANDèS,David L. DONOHO. Continuous Curvelet Transform:Resolution of the Wavefront Set[EB/OL]. Available:www-stat.stanford.edu/~donoho/Reports/2003/ContCurveletTransform-I.pdf,2003-5-6/2004-8-15.
  • 8Emmanuel J. CANDèS,David L. DONOHO. Continuous Curvelet Transform:Discretization and Frames [EB/OL]. Available:www-stat.stanford.edu/~donoho/Reports/2003/ContCurveletTransform-II.pdf,2003-5-6/2004-8-15.
  • 9Emmanuel J. CANDèS,David L. DONOHO. Curvelets-a surprisingly effective nonadaptive representation for objects with edges [EB/OL]. http://www.acm.caltech.edu/~emmanuel/papers/Curvelet-SMStyle.pdf,1999-12-16/2004-9-20.
  • 10Jean-Luc STARCK,Emmanuel J. CANDèS,David L. DONOHO. The Curvelet transform for image denoising[J]. IEEE Trans Image Proc,2002,11(6):670-684.

共引文献72

同被引文献174

引证文献18

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部