期刊文献+

基于瑞利分布的计量型序贯网图检验 被引量:5

Sequential Mesh Test under Rayleigh Distribution
在线阅读 下载PDF
导出
摘要 针对瞄准发射系统中着落点位置通常服从瑞利分布的事实,研究了计量型检验问题,建立了基于瑞利分布的序贯网图检验.采用搜索和迭代的计算机程序,可以得到计量型序贯网图检验方案.通过实例将序贯网图与计量型定数检验和计量型序贯概率比检验进行比较.结果显示,计量型序贯网图检验在减小最大样本量方面有更好的效果,更适用于高成本的抽样检验. This paper discussed the sample inspection problem under Rayleigh distribution. and proposed sequential mesh test. By searching and iterative programs, the design of the new test is not hard to obtain. Examples showed that in comparison with other methods, the new test is more powerful with small sample size .
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2006年第5期87-92,共6页 Journal of East China Normal University(Natural Science)
关键词 瑞利分布 序贯网图检验 最大样本量 Rayleigh distribution sequential mesh test maximum sample number
  • 相关文献

参考文献5

  • 1濮晓龙,闫章更,茆诗松,张应山,李艳.计数型序贯网图检验[J].华东师范大学学报(自然科学版),2006(1):63-71. 被引量:20
  • 2WALD A. Sequential Analysis [M]. New York: Wiley, 1947
  • 3International Electrotenical Commission. IEC 1123: Reliability Testing-Compliance test plans for success ratio[S].
  • 4LORDEN G. Structure of sequential tests minimizing an expected sample size [J]. Z Wahrsch verw Gebiete,1980, 51: 291-302.
  • 5ANDERSON T W. A modification of the sequential probability ratio test to reduce the sample size [J]. Ann Math Statist, 1960, 31: 165-197.

二级参考文献9

  • 1Wald, A. Sequential Analysis[M]. New York: Wiley, 1947.
  • 2IEC 1123, Reliability Testing-Compliance test plans for success ratio[S].
  • 3Anderson T W. A modification of the sequential probability ratio test to reduce the sample size[J].Ann Math Statist, 1960, 31: 165-197.
  • 4Armitage P. Sequential analysis with more than two alternative hypotheses, and its relation to discriminant function analysis[J]. J of the Roy Statist Soc, Set B, 1950, 12: 137-144.
  • 5Billard L. Optimum partial sequential tests for two-sided tests of the binomial parameter[J].JASA, 1977, 72:197-201.
  • 6Billard L. and Vagholkar M K. A sequential procedure for testing a null hypothesis against a two-sided alternative hypothesis[J]. J of the Roy Statist Soc, Set B, 1969, 31: 285-294.
  • 7Kiefer J, Weiss L. Some properties of generalized sequential probability ratio tests[J]. Ann Math Statist, 1957,28: 57-75.
  • 8Lorden G, 2-SPRT's and the modified Kiefer-Weiss problem of minimizing an expected sample size[J]. Ann Math Statist, 1976, 4: 281-291.
  • 9Lorden G. Structure of sequential tests minimizing an expected sample size[J]. Z Wahrsch verw Gebiete, 1980,51: 291-302.

共引文献19

同被引文献15

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部