期刊文献+

连续级联喇曼光纤激光器耦合波方程的修正(英文) 被引量:2

Modification of Coupled Equations for Cascaded CW Raman Fiber Lasers
在线阅读 下载PDF
导出
摘要 从最基本的耦合波方程出发,考虑光波正反向传输的情况下,推导出了一个全面的、准确的关于连续级联喇曼光纤激光器的理论模型,描述了各级Stokes光波功率沿光纤长度的变化.指出了相关一些文献中存在的不足,并且给出了多级斯托克斯光波相互作用的有效作用面积的表达式.此模型有助于喇曼光纤激光器的设计. A comprehensive and accurate numerical model is presented based on basic coupled equations to describe multi-Stokes Raman lasing performances in optical fibers. Though much work has been done on this, there are insufficiencies and shortcomings more or less in the literatures after analysis of them. These insufficiencies are also pointed out in this paper. The interactions between forward and backward traveling waves together with interactions between Stokes at different orders are all taken into account in this model. Effective core area for the interaction between multi-Stokes has also been obtained. The numerical solution of the differential system will lead in a natural way to calculate Stokes powers at the output end of the fiber. The proposed model is important for the design of CW cascaded Raman fiber lasers.
作者 杜戈果
出处 《光子学报》 EI CAS CSCD 北大核心 2006年第9期1281-1284,共4页 Acta Photonica Sinica
基金 SupportedbytheShenzhenScienceandTechnologyBureauSchemeunderGrantNo.200207andShenzhenNanshanDistrictScienceandTechnologyScheme
关键词 级联喇曼激光器 受激喇曼散射 数值模型 有效作用面积 光纤激光器 Keywords Cascaded Raman laser Stimulated Raman scattering Numerical modeling Effectivecore area Optical fiber laser
  • 相关文献

参考文献2

二级参考文献12

  • 1[1]Takachio N , Suzuki H. Application of Raman-Distributed Amplification to WDM Transmission Systems Using 1.55μm Dispersion-Shifted Fiber. J Lightwave Technol, 2001, 19(1):60~69
  • 2[2]Garrett L D, Eiselt M, Tkach R W. Field Demonstration of Distributed Raman amplification with 3.8-dB Q-Improvement for 5×120-km transmission. IEEE Photon Technol Lett, 2001, 13(2):157~159
  • 3[3]Matsuda T, Murakami M, Imai T. Experiments on long-haul broadband WDM transmission with Raman amplification. Electron Lett, 2001, 37(4):237~238
  • 4[4]Kidorf H, Rottwitt K, Nissov M, et al. Pump Interactions in a 100-nm Bandwidth Raman Amplifie. IEEE Photon Technol Lett, 1999, 11(5):530~532
  • 5[5]Yadlowsky M J. Ultra broadband optical amplifier. OFC99, 1999, San Diego, CA, WA1
  • 6[6]Wey J S, Butler D L, Van Leeuwen M F,et al.Crosstalk Bandwidth in Backward Pumped Fiber Raman Amplifier. IEEE Photon Technol Lett, 1999,7(1):1417~1419
  • 7[7]Neuhauserk R E, Krummrich P M, Bock H, et al..Impact of nonlinear pump interactions on broadband distributed Raman amplification. OFC2001,2001, MA4
  • 8[8]Namiki S, Emori Y. Ultrabroad-Band Raman Amplifiers pumped and Gain-Equalized by Wavelength-Division-Multiplexed High-Power laser diode. IEEE J on Selected Topics in Quantum Electronics,2001, 7(1):3~16
  • 9[9]Krummrich P M, Neuhauser R E, Glingener C. Bandwidth limitations of broadband distributed Raman fiber amplifiers for WDM systems. OFC2001, 2001, MI3
  • 10[10]Seo H , Oh K. Optimization of silica fiber Raman amplifier using the Raman frequency modeling for an arbitrary GeO2 concentration in the core. Optics Communications, 2000,1:145~151

共引文献14

同被引文献24

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部